The Level 0 Trigger Decision Unit for the LHCb experiment

Hervé Chanal, Olivier Deschamps, Régis Lefèvre, Magali Magne, Pascal Perret

Laboratoire de Physique Corpusculaire de Clermont Ferrand IN2P3/CNRS 24 avenue des Landais 63177 Aubière

23 september 2009, TWEPP09

Outline

1 Introduction

- LHCb detector
- LHCb trigger

The Level 0 Decision Unit

- Interfaces
- Board
- Processing
- Test Bench

The LHCb detector

Purpose

Dedicated to the b physics at the LHC

Features

- Collision at 14 TeV
- b and b produced at small angles and correlated
- \rightarrow forward spectrometer ($\theta \in 15/300$ mrad)
 - Small branching ratios of interesting b decays
- \rightarrow 1Hz for a BR of 10⁻⁴ (over 10MHz of visible interactions)
 - The trigger system is the key

LHCb

Two levels of trigger

L0 trigger

- Custom electronics
- Synchronous system (40MHz)
- Fixed latency (4µs)
- Use the fastest detectors
- Output rate < 1 MHz >

High Level Trigger (HLT)

- PC farm (\approx 2000 CPU)
- 1. Fast tracking
- → L0 Confirmation
- → impact parameter cuts
- 2. Almost full event reconstruction
- Storage at < 2kHz >
- $ightarrow \approx 35$ kB by event

LHCb and its trigger system

The L0 Trigger

Subtriggers

- Pile Up system
- \rightarrow 2 silicon plane before the interaction point
- → Primary vertexes multiplicity (veto on pile-up events)
- Calorimeter trigger :
- ightarrow Highest E_{T} γ , electron, π^{0} , hadron
- $\rightarrow \Sigma E_T$ and SPD multiplicity
 - Muon trigger
- \rightarrow Two highest p_T muons / quadrant

Two core boards

- The L0DU :
- → L0 Decision
- → Highly flexible triggering algorithms
- The Readout Supervisor (RS)
- → Broadcast the decision, the clock and synchronisation signals
- ightarrow Check the DAQ occupancy

Pile Up Veto histograms

Muon trigger

The LODU environment

Inputs

- Concentrate the data from the L0 sub-triggers
- All inputs are optical :
- → 24 different clocks
- Optical TTC (Timing, Trigger and Control) input
- → LHC clock
- → Synchronisation signals

Outputs

- Decision output to the Readout Supervisor (RS)
- Internal processing summary for the DAQ

Experimental Control System (ECS)

Ethernet connection

L0DU interfaces

L0DU at the experimental site

The LODU and TELL1 board

TELL1

- Common interface board for LHCb
- Provide access to the ECS using a small embeded PC (CCPC)
- Provide DAQ output (Quad-Gigabyte board)

L0DU ECS

- Registers access : I²C bus
- Firmware upgrade : JTAG bus

LODU DAQ

 TELL1 FPGA used to transmit the L0DU DAQ frame

L0DU and TELL1 boards

The LODU mezzanine

16 layers 9U board

L0DU elements

The LODU processing architecture

2 FPGA for the processing

- L0DU algorithms in FPGA1
- Monitoring in FPGA2
- 65% of the available logical ressources in FPGA1

Main characteristics :

- Fully configurable algorithm using 128 conditions
- Low dead time for algorithms changes
- 40MHz pipeline architecture

Figure: FPGA1 and FPGA2 processing

Two steps : pre-processing and L0DU algorithms

Pre-processing

Pre-processing (for each input) :

- Clock domain adaptation
- $\rightarrow~$ 24 input clocks at 80MHz with unknown phases
- \rightarrow 1 local clock at 40MHz
- Data demultiplexing (16 to 32 bits)
- Compensate the difference between the L0 sub-trigger latencies
- BERT (Bit Error Rate Test) module for optical links

one input

Pre-processing : Clock domain adaptation

Purpose

- Adapt to the 40MHz local clock the data from the optical deserializers
- Demultiplex the data

Clock domain

- 160MHz transition clock
- → Acquisition phase step of 3.12 ns (rising and falling edge)
- → Use 2 dedicated clock network of the FPGA

Demultiplexing

- Dedicated bit in the data : MSB/LSB
- Translate the acquisition point to get the MSB at the right position

40 MHz Synchronized output

Clock domain adaptation principle

Pre-processing : Clock phase determination algorithms

- 1. Wait all clock domain adapter to be ready
- Acquire 256 times 80MHz input clock at the rising and falling edges of the 160MHz clock with enable(0)
- If more than 128 '1' at pt0 (rising edge) have been acquired then acquisition results for pt0 is setted to '1', same for pt1 (falling edge)
- 4. Same as 2. with enable(1)
- 5. Same as 3. with pt2 and pt3
- 6. Use a LUT to select the right phase of the clock

Acquisition results				Phase
enable(0) enable(1)				
pt0	pt1	pt2	pt3	selected
0	0	0	0	ERR
0	0	0	1	2
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	ERR
0	1	1	0	0
0	1	1	1	1
1	0	0	0	3
1	0	0	1	2
1	0	1	0	ERR
1	0	1	1	2
1	1	0	0	3
1	1	0	1	3
1	1	1	0	0
1	1	1	1	ERR

Table: Clock phase selection LUT

The LODU algorithms

Algortihm

The L0DU algorithms makings involve multiple steps

Inputs

Extracted from the optical inputs data :

- The *E_T* and the address of the highest energy γ, electron, π⁰_l, π⁰_q, hadron
- The $\sum E_T$ in the calorimeter and the SPD multiplicity
- The first and second Pile-Up peak content and position
- The three highest p_T muons address and p_T

The L0DU algorithms

30 compound data

- Sum or difference of the E_T (resp. p_T) of up to 3 particles
- Mask on the address of a particle

Example :

 $E_T(electron) + E_T(\gamma)$ Address(electron)&0xFF

128 elementary conditions

A threshold with an operator (=, \neq , > , <) on

- A data extracted from the inputs
- A compound data
- A RAM stocking a 8 bit value for each BCID (possible to account for beam/beam structure for example)

Example : $E_T(electron) > 10$

The L0DU algorithms

32 trigger channels

An "and" network on the elementary conditions Example :

 $E_T(electron) > 10$ and $E_T(photon) < 6$

1 decison

An "or" on the trigger channels

Decision Flags

Force trigger bit :

 Setted when an error is detected in links demultiplexing or time alignement, or if a status bit from a sub-detector is setted

Timing trigger bit :

• Setted at '1' when a special series of 5 L0 decision is detected or in the decision of a simpler algorithm involving only ΣE_T

Algorithms : An example

Each trigger channel can be downscaled in steps of 0.1%.

L0DU test bench

The test bench allows to :

- Stress the optical links
- Test the firmware

Main components :

- Stimuli pattern generator : the GPL board
- PC to control and program the boards
- TFC system for the clock and synchronisation signals distribution

The GPL board

The GPL board

- Built as a mirror board of the L0DU
- → 2 processing FPGA
- → Same layout for the optical part
- Control : USB interface
- Test modes :
- 1. Send up to 10 LHC cycles of patterns
- 2. Send a continuous counter for the BERT

Hardware

- 16 layer boards
- 2 FPGA Stratix 1P1S40 and 1 1P1S10 from Altera
- Optical part : Texas instrument TLK

GPL board

Timeline

- 2002 First L0DU prototype
 - → Concept board
 - $\rightarrow\,$ No interfaces with the ECS and the TFC
- 2006 Second L0DU protoype
 - \rightarrow All functionalities implemented
 - \rightarrow FPGA ressources too limited
- 2007 Final L0DU prototype
- Feb. 2007 Installation of the L0DU in the experimental area
- Feb. 2007 Initial time alignment
- Apr. 2007 First tests with the calorimeter trigger
- Apr. 2007 First tests with the muon trigger
- Dec. 2007 First cosmics taken with the calorimeter trigger
- Apr. 2008 First cosmics taken with the muon trigger
- Aug. 2008 First beam induced particles
- Dec. 2008 First tests with the Pile-Up

Cosmics spotted in LHCb

Summary

- A very flexible L0 trigger board has been developped
- \rightarrow Works since 2007
- → Small evolution since
- Extensively used at the experimental site
- \rightarrow Commissioning of the detectors
- Millions of cosmics have been recorded
- L0DU used to trigger on TED events and record very usefull Velo tracks
- First beam induced data triggered with L0DU on September 10, 2008
- Ready for the beam

Recorded Velo tracks