
Implementing the GBT data transmission protocol in FPGAs

S. Baron a, J.P. Cachemiche b, F. Marin b, P. Moreira a, C. Soos a

a CERN, 1211 Geneva 23, Switzerland, bCPPM, 13288 Marseille, France

sophie.baron@cern.ch, cachemi@cppm.in2p3.fr, marin@cppm.in2p3.fr, paulo.moreira@cern.ch,
csaba.soos@cern.ch

Abstract

The GBT chip [1] is a radiation tolerant ASIC that can be
used to implement bidirectional multipurpose 4.8Gb/s optical
links for high-energy physics experiments. It will be proposed
to the LHC experiments for combined transmission of physics
data, trigger, timing, fast and slow control and monitoring.
Although radiation hardness is required on detectors, it is not
necessary for the electronics located in the counting rooms,
where the GBT functionality can be realized using
Commercial Off-The-Shelf (COTS) components. This paper
describes efficient physical implementation of the GBT
protocol achieved for FPGA devices on Altera and Xilinx
devices with source codes developed in Verilog and VHDL.
The current platforms are based on Altera StratixIIGX and
Xilinx Virtex5.

We will start by describing the GBT protocol
implementation in detail. We will then focus on practical
solutions to make Stratix and Virtex transceivers match the
custom encoding scheme chosen for the GBT.

Results will be presented on single channel occupancy,
resource optimization when using several channels in a chip
and bit error rate measurements, with the only aim to
demonstrate the ability of both Altera and Xilinx FPGAs to
host such a protocol with excellent performances. Finally,
information will be given on how to use the available source
code and how to integrate GBT functionality into custom
FPGA applications.

I. GBT PROTOCOL PRESENTATION

A. Introduction
The general architecture of a high-speed optical link

implemented using the GBT chipset and FPGA is represented
in Figure 1.

Figure 1: GBT optical link implementation scheme

Logically the link provides three “distinct” data paths for:
Timing and Trigger, Data Acquisition and the Slow Control.
In practice, the three logical paths do not need to be physically
different and are merged. The aim of such architecture is to
allow a single link to be used simultaneously for data readout,
timing and trigger distribution, readout and experiment
control. The link establishes a point-to-point optical
bidirectional connection (using two optical fibers).

The GBT chipset [2] is under development to match such
architecture. It targets high-speed (3.36Gb/s) data transmission
between the detectors and the counting room.

As illustrated in Figure 1, such a link is implemented by a
combination of custom and Commercial Off-The-Shelf
(COTS) components. In the counting room, the receivers and
transmitters will be implemented using COTS components and
FPGAs while, embedded on the detectors, the receivers and
transmitters will be implemented by the GBT chipset and
Versatile Link Components [3]. This architecture clearly
distinguishes between the counting room and front-end
electronics specificities: that is, the on-detector front-end
electronics works in a hostile radiation environment requiring
custom made components while the counting room electronics
operates in a radiation free environment allowing the use of
COTS components. Moreover, the availability of FPGAs with
up to 48 Hard-IP serializer blocks would allow concentrating
data from several front-end sources into a single module in the
counting room facilitating data merging and leading to
compact systems.

The study presented below will focus on proving the
usability of COTS components and FPGAs to implement the
GBT protocol in counting rooms [4].

B. GBT Protocol
Due to the beam luminosity planned for SLHC, the high

speed data transmission link will be exposed to high Single
Event Upset rates. SEUs are a major impairment to error free
data transmission. To deal with this, the GBT line coding
adopts a robust error correction scheme that will allow
correction of bursts of errors caused by SEUs. A significant
fraction of the channel bandwidth must therefore be assigned
to the transmission of a Forward Error Correction (FEC) code.

The code to be used must provide a high level of
protection, since errors occurring during transmission can also
occur as burst errors and not only as isolated events. Because
of this, a double interleaved Reed-Solomon correcting code
was chosen. The code is built by first scrambling the input
data to provide DC-balancing of the frame, and then
interleaving two Reed-Solomon encoded words (using 4-bit

mailto:sophie.baron@cern.ch
mailto:cachemi@cppm.in2p3.fr
mailto:marin@cppm.in2p3.fr
mailto:paulo.moreira@cern.ch
mailto:csaba.soos@cern.ch

symbols), each capable of correcting a double symbol error
(Figure 2). The interleaving operation allows increasing the
correction capability of errors up to 4 symbols.

Figure 2: GBT encoding scheme

This in practice means that a sequence of up to 16
consecutive incorrectly-received bits can be corrected. This
correction technique requires an extra field of 32 bits in the
frame to protect the 88 transmitted bits (including data, header
and slow control), resulting in a code efficiency of 73%.

The frame (sketched in Figure 3) is composed of 120 bits
that are transmitted during a single SLHC bunch crossing
interval (25 ns) resulting in a line data rate of 4.8 Gb/s. Of
these, 4 bits are used for the frame Header (H) and 32 used for
Forward Error Correction (FEC). This leaves a total of 84 bits
free for data transmission corresponding to a user bandwidth
of 3.36 Gb/s. In these 84-bits, 4 are always reserved for the
Slow Control (SC) field (see ‘Slow control channel’) and 80-
bits are reserved for data (D) transmission. Among the 4-bit of
slow control, 2 are reserved for GBT control and 2 are user
defined. The ‘D’ field use is not pre-assigned and can be used
indistinguishably for Data Acquisition (DAQ), Timing Trigger
& Control (TTC) or Experiment Control (EC) applications
[5][6].

This makes 2+80 = 82 bits of data available to the user for
a frame of 120bits, giving a payload of 68%.

Figure 3: GBT frame

II. GBT PROTOCOL IMPLEMENTATION IN FPGAS

A. FPGAs constraints
In the same way it is done in the GBT ASIC, the DC-

balance of data transmitted over the optical fiber is ensured by
the FPGA by scrambling the data contained in the SC and D
fields. For forward error correction the scrambled data and
header are Reed-Solomon encoded before nibble interleaving,

and serialization. The line encoding/decoding process is
represented in Figure 4.

No problem was encountered to configure the hard-IP
transceivers of the FPGAs, as the portability of this protocol
was carefully checked during the specification phase of the
GBT. In particular, the ability of Stratix and Virtex
transceivers to transmit 120 bits at a frequency of 40 MHz was
ensured at that time.

Figure 4: Block diagram of a full GBT link in an FPGA

However, these transceivers provide neither specific
encoding schemes like the one we selected nor flexible word
alignment functions. This is mainly due to the fact that they
target the most common telecommunication protocols. We had
thus to implement in user logic all the encoding and decoding
blocks, as well as a customized pattern detection and word
alignment block (see Figure 5).

Figure 5: Frame alignment procedure in FPGAs

At power on or after a loss of synchronization, the receiver
starts a frame-lock acquisition cycle to find the frame
boundaries, that is, to acquire frame synchronization.

The frame-lock acquisition mode operates as follows. In
the StratixIIGX, the transceiver hard-IP word aligner block
cannot be bypassed. It is thus configured to lock on an
arbitrary pattern. Once completed the process is not repeated,
except at power on or upon a command from the pattern
detection state machine. For all the other devices, we bypass
the word aligner inside the transceiver.

The parallel output of the receiver feeds the custom pattern
detection and word aligner blocks, which take control of the
frame alignment process: for each received frame the four bits
in the header position are checked for header validity. Because
the header pattern can be found in the data, 23 consecutive
frames must contain a valid header before the frame is
considered locked (the probability of false boundary detection
is then reduced below 10-20 as demonstrated in [5]). Otherwise,
the frame is shifted by one bit and the valid header checking
procedure is repeated. After frame-lock is achieved, the

receiver switches to the frame-tracking mode, which maintains
frame synchronization even in the presence of headers
corrupted by noise or single event upsets.

The phase tracking mode must thus be tolerant to a low
rate of detection of invalid headers. Provided that frame
synchronization is maintained, the detection of a corrupted
header will not introduce a transmission error since the header
field is also protected by the forward error correction code
transmitted with the frame. A corrupted header will thus be
corrected and properly identified by the Reed-Solomon
decoder. The frame tracking mode operates as follows: after a
successful frame-lock acquisition cycle has been executed the
receiver enters the frame-tracking mode. In this mode the
receiver strives to maintain frame synchronization. It checks
the validity of the headers and counts the number of invalid
headers received in 64 consecutive frames after the first
invalid header has been detected. If the number of invalid
headers received in 64 consecutive frames is bigger than 4
then the receiver re-enters the frame-lock acquisition mode.
Otherwise the receiver resets the count of invalid frames and
remains in the frame-tracking mode.

B. Resource Usage
The full serializer-deserializer, as described above, was

implemented both in a StratixIIGX and in a Virtex5FXT.
Besides the transceivers and PLLs, which do not consume any
resources as they are hard-coded, a single link consumes 1542
ALMs (Adaptative Logic Modules) for the StratixII and 1481
Slices for the Virtex5.

The table 1 shows the number of links which can be
implemented in a selection of StratixIIGX and of Virtex5FXT
devices, taking into account the available transceiver blocks
and logic elements.

Table 1: Maximum GBT links for StratixIIGX

Table 2: Maximum GBT links for Virtex5FXT

Differences of occupancy between Table 1 and Table 2
emphasize the different policies used by Altera and Xilinx in
term of ratio between the number of logic cells and the
number of transceivers. However, these numbers should be
used with care. It is obvious that the occupancy of logic cells
is too high if one tries to use all the available transceivers of a
chip for GBT protocol implementation. This is tempered by
the fact that a design using GBT links will not dedicate all its

links to GBT transceivers: some links must be left to output
processed data and therefore occupancy will be lower.
However, as a back-end FPGA has to dedicate a significant
part of its logic to other tasks, optimization of the resources
used by the decoding block is a must.

C. Optimization
An analysis of the resource usage per block for a single

link (see Figure 6) quickly shows that more than half of the
logic elements are used by the Reed-Solomon decoder.

Figure 6: % of ALMs/Slices of one GBT link used by each

functional block

It was thus natural to study optimization schemes,
particularly for designs hosting several GBT links in one
device. The first possibility is to share one decoder block
between several links, multiplying its operating frequency by
the same factor. The Reed-Solomon decoding algorithm is a
large combinatorial circuit, and the maximum operating
frequency achieved was 134MHz for the StratixIIGX,
applying all the timing optimization constraints available. This
allowed to share one decoder block between 3 links.

An analysis of the resources used for 12 links implemented
in a StratixIIGX type EP2SGX90 was carried out with and
without optimization.

Figure 7: Effect of optimization by 3 on 12 links implemented

on a EP2SGX90

As shown in the Figure 7, the device occupancy dropped
from 51% of ALMs to 40% thanks to the optimization. Indeed,
the fraction of the resources used by the decoder blocks
dropped from 28% down to 10%. However, 7% of new logic
elements were added due to the resource consuming
multiplexers and de-multiplexers required to share the
decoder.

This implementation was tested on a PCIe SIIGX
development kit with three optimized links using loopback
cables mounted on the HSMC connectors. It ran several days
without a single error being detected.

The next step for optimization could be to pipeline the
decoder algorithm to increase the clock frequency. The
drawback of this implementation, beside its complexity, is that
it increases the decoding latency.

III. MEASUREMENTS

A. Setups and equipment
Two evaluation boards were used to implement the GBT

protocol on FPGAs. The ML523 (hosting a Virtex5FXT type
XC5VFX100T) for Xilinx [8], the PCIe SIIGX Development
Kit (hosting a StratixIIGX type EP2SGX90) for Altera [7],
both powered by the power supply given in the kit (See
Figure 8).

Figure 8: Evaluation platforms. ML523 from Xilinx (left) and

PCIe SIIGX from Altera (right)

The reference clock was generated by the J-BERT 4903A
from Agilent on differential SMA cables.

For all the qualitative measurements, the very same SFP+
1300nm optical transceiver module from MergeOptics was
used (mounted and dismounted from one board to another).
The optical patch cords were 50cm long.

The jitter measurements were made at the optical receiver
level with the Lecroy SDA100G sampling scope equipped
with 10 GHz optical sampling head.

B. Platform testing
Various platforms and technologies were tested by

implementing the GBT protocol in both Altera and Xilinx
chips presented above. As described on the Figure 9, a
generator instantiated in the Virtex5 was sending parallel data
(80 bits @ 40 MHz, either constant words or flying bits) to the
encoder and serializer.

Figure 9: Test setup based on two platforms

The signal (that looks like a PRBS due to the scrambling)
was transmitted by an SFP+ to the receiver in the StratixII
over a short optical fibre (A). After full decoding (and remote
monitoring of the decoded values), the data were encoded
back, serialized again and transmitted using another SFP+
module and an optical fibre (B) back to the Virtex5, where it
was decoded and compared to the generated words.

We let the system run during several hours without
counting any error. Besides providing us an opportunity to
implement the GBT protocol on both main technologies, this
test allowed us to check the compatibility between the GBT-
ASIC protocol and its VHDL translation: the Virtex5 had the
Reed-Solomon encoder and decoder implemented in Verilog
(the direct copy of the GBT protocol implementation in the
ASIC), whereas the StratixII encoder and decoder were
implemented in VHDL.

C. Jitter performances
Using the same setup, we measured the jitter out of the two

optical fibres A and B in Figure 9. For each of the results
below, the SFP+ module transmitting the optical signal was
the same (it was successively mounted on A and B fibres to
test Xilinx and Altera devices).

As presented in Figure 10, Xilinx and Altera platforms
both showed excellent performances. The eyes were widely
open, and the total jitter of the order of 80ps PP and 5ps RMS.

Figure 10: Eye diagrams for Xilinx Virtex5 FXT (left) and

Altera StratixIIGX (right)

IV. SOURCE CODE AVAILABILITY
Reference designs of the GBT protocol will be made

available before the end of 2009 for both Altera and Xilinx
FPGAs. They will be presented as a firmware-based starter kit,
downloadable on request via the CERN SVN repository. This
starter kit will include the source code for both
implementations, and, as much as possible, for various types
of devices (StratixII and IV GX, and Virtex5 and 6 FXT) and
various flavors of optimization. It will also include
documentation.

Basic support will be provided on how to use and optimize
the implementation.

V. CONCLUSION
With this study, we proved that the GBT protocol can

indeed be implemented with success both in Altera and Xilinx
FPGA chips. The scheme proposed in the introduction where

GBT ASICs are used in detector areas and FPGAs in counting
rooms is thus a valid prospect, and the developed code will
now be used as a basis to test the GBT serdes chip once it
becomes available.

A firmware-based starter kit will be made available upon
request to the users. It will be progressively completed by
several implementation flavors for StratixIV and Virtex6, and
new optimization techniques like a pipelined Reed-Solomon
decoder are being considered.

VI. REFERENCES
[1] GBT project home page:

https://espace.cern.ch/GBT-Project

[2] P. Moreira, GBTx specifications:
https://espace.cern.ch/GBT-
Project/GBTX/Specifications/gbtxSpecsV1.2.pdf

[3] F. Vasey, “Versatile Link”, ACES 2009 workshop, 3-4
March 2009, CERN, Geneva:
http://indico.cern.ch/contributionDisplay.py?contribId=37&se
ssionId=22&confId=47853

[4] GBT-FPGA project web site:
https://espace.cern.ch/GBT-Project/GBT-FPGA

 [5] G. Papotti, “Architectural studies of a radiation-hard
transceiver ASIC in 0.13 mm CMOS for digital optical links
in high energy physics applications”, PhD thesis, University of
Parma, Italy, January 2007.
 http://papotti.web.cern.ch/papotti/tesi.pdf.

[6] G. Papotti, “An Error-Correcting Line Code for a HEP
Rad-Hard Multi-GigaBit Optical Link”, 12th Workshop for
LHC and future Experiments (LECC 2006), Valencia, Spain,
25-29 September 2006, pp.258-262.
http://indico.cern.ch/contributionDisplay.py?contribId=30&se
ssionId=19&confId=574

[7] Documentation on Altera PCI express Development
Kit, StratixIIGX Edition:
http://www.altera.com/products/devkits/altera/kit-
pciexpress_s2gx.html

[8] Documentation on Xilinx Virtex5 FXT ML523
RocketIO GTX characterization Platform:
http://www.xilinx.com/products/devkits/HW-V5-ML52X-
UNI-G.htm

https://espace.cern.ch/GBT-Project
https://espace.cern.ch/GBT-Project/GBTX/Specifications/gbtxSpecsV1.2.pdf
https://espace.cern.ch/GBT-Project/GBTX/Specifications/gbtxSpecsV1.2.pdf
http://indico.cern.ch/contributionDisplay.py?contribId=37&sessionId=22&confId=47853
http://indico.cern.ch/contributionDisplay.py?contribId=37&sessionId=22&confId=47853
https://espace.cern.ch/GBT-Project/GBT-FPGA
http://papotti.web.cern.ch/papotti/tesi.pdf
http://indico.cern.ch/contributionDisplay.py?contribId=30&sessionId=19&confId=574
http://indico.cern.ch/contributionDisplay.py?contribId=30&sessionId=19&confId=574
http://www.altera.com/products/devkits/altera/kit-pciexpress_s2gx.html
http://www.altera.com/products/devkits/altera/kit-pciexpress_s2gx.html
http://www.xilinx.com/products/devkits/HW-V5-ML52X-UNI-G.htm
http://www.xilinx.com/products/devkits/HW-V5-ML52X-UNI-G.htm

