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Abstract 

The GBT chip [1] is a radiation tolerant ASIC that can be 
used to implement bidirectional multipurpose 4.8Gb/s optical 
links for high-energy physics experiments. It will be proposed 
to the LHC experiments for combined transmission of physics 
data, trigger, timing, fast and slow control and monitoring. 
Although radiation hardness is required on detectors, it is not 
necessary for the electronics located in the counting rooms, 
where the GBT functionality can be realized using 
Commercial Off-The-Shelf (COTS) components. This paper 
describes efficient physical implementation of the GBT 
protocol achieved for FPGA devices on Altera and Xilinx 
devices with source codes developed in Verilog and VHDL. 
The current platforms are based on Altera StratixIIGX and 
Xilinx Virtex5. 

We will start by describing the GBT protocol 
implementation in detail. We will then focus on practical 
solutions to make Stratix and Virtex transceivers match the 
custom encoding scheme chosen for the GBT.  

Results will be presented on single channel occupancy, 
resource optimization when using several channels in a chip 
and bit error rate measurements, with the only aim to 
demonstrate the ability of both Altera and Xilinx FPGAs to 
host such a protocol with excellent performances. Finally, 
information will be given on how to use the available source 
code and how to integrate GBT functionality into custom 
FPGA applications. 

I. GBT PROTOCOL PRESENTATION 

A. Introduction 
The general architecture of a high-speed optical link 

implemented using the GBT chipset and FPGA is represented 
in Figure 1.  

 
 

Figure 1: GBT optical link implementation scheme 

 

Logically the link provides three “distinct” data paths for: 
Timing and Trigger, Data Acquisition and the Slow Control. 
In practice, the three logical paths do not need to be physically 
different and are merged. The aim of such architecture is to 
allow a single link to be used simultaneously for data readout, 
timing and trigger distribution, readout and experiment 
control. The link establishes a point-to-point optical 
bidirectional connection (using two optical fibers). 

The GBT chipset [2] is under development to match such 
architecture. It targets high-speed (3.36Gb/s) data transmission 
between the detectors and the counting room. 

As illustrated in Figure 1, such a link is implemented by a 
combination of custom and Commercial Off-The-Shelf 
(COTS) components. In the counting room, the receivers and 
transmitters will be implemented using COTS components and 
FPGAs while, embedded on the detectors, the receivers and 
transmitters will be implemented by the GBT chipset and 
Versatile Link Components [3]. This architecture clearly 
distinguishes between the counting room and front-end 
electronics specificities: that is, the on-detector front-end 
electronics works in a hostile radiation environment requiring 
custom made components while the counting room electronics 
operates in a radiation free environment allowing the use of 
COTS components. Moreover, the availability of FPGAs with 
up to 48 Hard-IP serializer blocks would allow concentrating 
data from several front-end sources into a single module in the 
counting room facilitating data merging and leading to 
compact systems. 

The study presented below will focus on proving the 
usability of COTS components and FPGAs to implement the 
GBT protocol in counting rooms [4]. 

B. GBT Protocol 
Due to the beam luminosity planned for SLHC, the high 

speed data transmission link will be exposed to high Single 
Event Upset rates. SEUs are a major impairment to error free 
data transmission. To deal with this, the GBT line coding 
adopts a robust error correction scheme that will allow 
correction of bursts of errors caused by SEUs. A significant 
fraction of the channel bandwidth must therefore be assigned 
to the transmission of a Forward Error Correction (FEC) code. 

The code to be used must provide a high level of 
protection, since errors occurring during transmission can also 
occur as burst errors and not only as isolated events. Because 
of this, a double interleaved Reed-Solomon correcting code 
was chosen. The code is built by first scrambling the input 
data to provide DC-balancing of the frame, and then 
interleaving two Reed-Solomon encoded words (using 4-bit 
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symbols), each capable of correcting a double symbol error 
(Figure 2). The interleaving operation allows increasing the 
correction capability of errors up to 4 symbols. 

 

 
 

Figure 2: GBT encoding scheme 

This in practice means that a sequence of up to 16 
consecutive incorrectly-received bits can be corrected. This 
correction technique requires an extra field of 32 bits in the 
frame to protect the 88 transmitted bits (including data, header 
and slow control), resulting in a code efficiency of 73%.  

The frame (sketched in Figure 3) is composed of 120 bits 
that are transmitted during a single SLHC bunch crossing 
interval (25 ns) resulting in a line data rate of 4.8 Gb/s. Of 
these, 4 bits are used for the frame Header (H) and 32 used for 
Forward Error Correction (FEC). This leaves a total of 84 bits 
free for data transmission corresponding to a user bandwidth 
of 3.36 Gb/s. In these 84-bits, 4 are always reserved for the 
Slow Control (SC) field (see ‘Slow control channel’) and 80-
bits are reserved for data (D) transmission. Among the 4-bit of 
slow control, 2 are reserved for GBT control and 2 are user 
defined. The ‘D’ field use is not pre-assigned and can be used 
indistinguishably for Data Acquisition (DAQ), Timing Trigger 
& Control (TTC) or Experiment Control (EC) applications 
[5][6]. 

This makes 2+80 = 82 bits of data available to the user for 
a frame of 120bits, giving a payload of 68%. 

 

 
Figure 3: GBT frame 

II. GBT PROTOCOL IMPLEMENTATION IN FPGAS 

A. FPGAs constraints 
In the same way it is done in the GBT ASIC, the DC-

balance of data transmitted over the optical fiber is ensured by 
the FPGA by scrambling the data contained in the SC and D 
fields. For forward error correction the scrambled data and 
header are Reed-Solomon encoded before nibble interleaving, 

and serialization. The line encoding/decoding process is 
represented in Figure 4.  

No problem was encountered to configure the hard-IP 
transceivers of the FPGAs, as the portability of this protocol 
was carefully checked during the specification phase of the 
GBT. In particular, the ability of Stratix and Virtex 
transceivers to transmit 120 bits at a frequency of 40 MHz was 
ensured at that time. 

 
Figure 4: Block diagram of a full GBT link in an FPGA 

However, these transceivers provide neither specific 
encoding schemes like the one we selected nor flexible word 
alignment functions. This is mainly due to the fact that they 
target the most common telecommunication protocols. We had 
thus to implement in user logic all the encoding and decoding 
blocks, as well as a customized pattern detection and word 
alignment block (see Figure 5). 

 

 
Figure 5: Frame alignment procedure in FPGAs 

At power on or after a loss of synchronization, the receiver 
starts a frame-lock acquisition cycle to find the frame 
boundaries, that is, to acquire frame synchronization. 

The frame-lock acquisition mode operates as follows. In 
the StratixIIGX, the transceiver hard-IP word aligner block 
cannot be bypassed. It is thus configured to lock on an 
arbitrary pattern. Once completed the process is not repeated, 
except at power on or upon a command from the pattern 
detection state machine. For all the other devices, we bypass 
the word aligner inside the transceiver. 

The parallel output of the receiver feeds the custom pattern 
detection and word aligner blocks, which take control of the 
frame alignment process: for each received frame the four bits 
in the header position are checked for header validity. Because 
the header pattern can be found in the data, 23 consecutive 
frames must contain a valid header before the frame is 
considered locked (the probability of false boundary detection 
is then reduced below 10-20 as demonstrated in [5]). Otherwise, 
the frame is shifted by one bit and the valid header checking 
procedure is repeated. After frame-lock is achieved, the 



receiver switches to the frame-tracking mode, which maintains 
frame synchronization even in the presence of headers 
corrupted by noise or single event upsets. 

The phase tracking mode must thus be tolerant to a low 
rate of detection of invalid headers. Provided that frame 
synchronization is maintained, the detection of a corrupted 
header will not introduce a transmission error since the header 
field is also protected by the forward error correction code 
transmitted with the frame. A corrupted header will thus be 
corrected and properly identified by the Reed-Solomon 
decoder. The frame tracking mode operates as follows: after a 
successful frame-lock acquisition cycle has been executed the 
receiver enters the frame-tracking mode. In this mode the 
receiver strives to maintain frame synchronization. It checks 
the validity of the headers and counts the number of invalid 
headers received in 64 consecutive frames after the first 
invalid header has been detected. If the number of invalid 
headers received in 64 consecutive frames is bigger than 4 
then the receiver re-enters the frame-lock acquisition mode. 
Otherwise the receiver resets the count of invalid frames and 
remains in the frame-tracking mode. 

B.  Resource Usage 
The full serializer-deserializer, as described above, was 

implemented both in a StratixIIGX and in a Virtex5FXT. 
Besides the transceivers and PLLs, which do not consume any 
resources as they are hard-coded, a single link consumes 1542 
ALMs (Adaptative Logic Modules) for the StratixII and 1481 
Slices for the Virtex5.  

The table 1 shows the number of links which can be 
implemented in a selection of StratixIIGX and of Virtex5FXT 
devices, taking into account the available transceiver blocks 
and logic elements. 

 
Table 1: Maximum GBT links for StratixIIGX  

 

 
Table 2: Maximum GBT links for Virtex5FXT 

 

Differences of occupancy between Table 1 and Table 2 
emphasize the different policies used by Altera and Xilinx in 
term of ratio between the number of logic cells and the 
number of transceivers. However, these numbers should be 
used with care. It is obvious that the occupancy of logic cells 
is too high if one tries to use all the available transceivers of a 
chip for GBT protocol implementation. This is tempered by 
the fact that a design using GBT links will not dedicate all its 

links to GBT transceivers: some links must be left to output 
processed data and therefore occupancy will be lower. 
However, as a back-end FPGA has to dedicate a significant 
part of its logic to other tasks, optimization of the resources 
used by the decoding block is a must. 

C. Optimization  
An analysis of the resource usage per block for a single 

link (see Figure 6) quickly shows that more than half of the 
logic elements are used by the Reed-Solomon decoder. 

 
Figure 6: % of ALMs/Slices of one GBT link used by each 

functional block 

It was thus natural to study optimization schemes, 
particularly for designs hosting several GBT links in one 
device. The first possibility is to share one decoder block 
between several links, multiplying its operating frequency by 
the same factor. The Reed-Solomon decoding algorithm is a 
large combinatorial circuit, and the maximum operating 
frequency achieved was 134MHz for the StratixIIGX, 
applying all the timing optimization constraints available. This 
allowed to share one decoder block between 3 links. 

An analysis of the resources used for 12 links implemented 
in a StratixIIGX type EP2SGX90 was carried out with and 
without optimization. 

 
Figure 7: Effect of optimization by 3 on 12 links implemented 

on a EP2SGX90 

As shown in the Figure 7, the device occupancy dropped 
from 51% of ALMs to 40% thanks to the optimization. Indeed, 
the fraction of the resources used by the decoder blocks 
dropped from 28% down to 10%. However, 7% of new logic 
elements were added due to the resource consuming 
multiplexers and de-multiplexers required to share the 
decoder. 

This implementation was tested on a PCIe SIIGX 
development kit with three optimized links using loopback 
cables mounted on the HSMC connectors. It ran several days 
without a single error being detected. 



The next step for optimization could be to pipeline the 
decoder algorithm to increase the clock frequency. The 
drawback of this implementation, beside its complexity, is that 
it increases the decoding latency. 

III. MEASUREMENTS 

A. Setups and equipment 
Two evaluation boards were used to implement the GBT 

protocol on FPGAs. The ML523 (hosting a Virtex5FXT type 
XC5VFX100T) for Xilinx [8], the PCIe SIIGX Development 
Kit (hosting a StratixIIGX type EP2SGX90) for Altera [7], 
both powered by the power supply given in the kit (See 
Figure 8). 

 

 
Figure 8: Evaluation platforms. ML523 from Xilinx (left) and 

PCIe SIIGX from Altera (right) 

The reference clock was generated by the J-BERT 4903A 
from Agilent on differential SMA cables. 

For all the qualitative measurements, the very same SFP+ 
1300nm optical transceiver module from MergeOptics was 
used (mounted and dismounted from one board to another). 
The optical patch cords were 50cm long. 

The jitter measurements were made at the optical receiver 
level with the Lecroy SDA100G sampling scope equipped 
with 10 GHz optical sampling head. 

B. Platform testing 
Various platforms and technologies were tested by 

implementing the GBT protocol in both Altera and Xilinx 
chips presented above. As described on the Figure 9, a 
generator instantiated in the Virtex5 was sending parallel data 
(80 bits @ 40 MHz, either constant words or flying bits) to the 
encoder and serializer. 

 
Figure 9: Test setup based on two platforms 

The signal (that looks like a PRBS due to the scrambling) 
was transmitted by an SFP+ to the receiver in the StratixII 
over a short optical fibre (A). After full decoding (and remote 
monitoring of the decoded values), the data were encoded 
back, serialized again and transmitted using another SFP+ 
module and an optical fibre (B) back to the Virtex5, where it 
was decoded and compared to the generated words. 

We let the system run during several hours without 
counting any error. Besides providing us an opportunity to 
implement the GBT protocol on both main technologies, this 
test allowed us to check the compatibility between the GBT-
ASIC protocol and its VHDL translation: the Virtex5 had the 
Reed-Solomon encoder and decoder implemented in Verilog 
(the direct copy of the GBT protocol implementation in the 
ASIC), whereas the StratixII encoder and decoder were 
implemented in VHDL. 

C. Jitter performances 
Using the same setup, we measured the jitter out of the two 

optical fibres A and B in Figure 9. For each of the results 
below, the SFP+ module transmitting the optical signal was 
the same (it was successively mounted on A and B fibres to 
test Xilinx and Altera devices).  

As presented in Figure 10, Xilinx and Altera platforms 
both showed excellent performances. The eyes were widely 
open, and the total jitter of the order of 80ps PP and 5ps RMS. 

 

 
Figure 10: Eye diagrams for Xilinx Virtex5 FXT (left) and 

Altera StratixIIGX (right) 

IV. SOURCE CODE AVAILABILITY 
Reference designs of the GBT protocol will be made 

available before the end of 2009 for both Altera and Xilinx 
FPGAs. They will be presented as a firmware-based starter kit, 
downloadable on request via the CERN SVN repository. This 
starter kit will include the source code for both 
implementations, and, as much as possible, for various types 
of devices (StratixII and IV GX, and Virtex5 and 6 FXT) and 
various flavors of optimization. It will also include 
documentation. 

Basic support will be provided on how to use and optimize 
the implementation. 

V. CONCLUSION 
With this study, we proved that the GBT protocol can 

indeed be implemented with success both in Altera and Xilinx 
FPGA chips. The scheme proposed in the introduction where 



GBT ASICs are used in detector areas and FPGAs in counting 
rooms is thus a valid prospect, and the developed code will 
now be used as a basis to test the GBT serdes chip once it 
becomes available. 

A firmware-based starter kit will be made available upon 
request to the users. It will be progressively completed by 
several implementation flavors for StratixIV and Virtex6, and 
new optimization techniques like a pipelined Reed-Solomon 
decoder are being considered. 
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