SM HIGGS RESULTS FROM ATLAS+CMS

Johannes Elmsheuser

Brookhaven National Laboratory

on behalf of the ATLAS and CMS Collaborations

3 October 2016

Charged 2016, Uppsala

INTRODUCTION

- The LHC Run I at $\sqrt{s} = 7$ and 8 TeV culminated in the discovery of the Higgs boson by the ATLAS and CMS collaborations
- So far the measurable properties accessible with the currently recorded data like mass, production and decay rates and couplings to most of the other SM particles have been determined - but still several production modes and couplings have to be measured with more data.

HIGGS BOSON IN RUN I AND II

- During the on-going LHC Run II at $\sqrt{s} = 13$ TeV a much larger data sample has been recorded so far
- With this sample the measurement precision will be improved and it provides the possibility to study previously not accessible Higgs boson interactions
- Higher collision energy offer direct probing of BSM physics with e.g. additional Higgs bosons or non-SM Higgs boson interactions
- Already more Higgs bosons produced than in Run I

HIGGS BOSON PRODUCTION AT $m_H=125$ GeV

- Gluon gluon fusion (ggF) 87.2%
- Vector boson fusion (VBF): 6.8%
- VH: 4.1%
- ttH: 0.9%
- σ increase in range of factor 2 to 3.9(ttH) btw. Run I and II
- Observed modes: ggF, VBF

HIGGS BOSON DECAYS

- $\gamma\gamma$, ZZ: best mass resolution
- *bb*: huge BG but some potential in VH production
- $\tau\tau$: VBF to reduce BG
- *WW*: high rate but poorer mass resolution in $\ell \nu \ell \nu$ decays
- $\mu\mu$: very small BR
- Observed decay modes: $\gamma\gamma$, ZZ, WW, $\tau\tau$

HIGGS BOSON PRODUCTION AND DECAYS IN RUN I

- $m_H = 125.09 \pm 0.24 \text{ GeV}$
- Consistent with Spin 0 and even parity
- All couplings consistent with SM
- ggF precision in reach of theoretical uncertainties

ATLAS and CMS Run I combination papers:

Mass: Phys. Rev. Lett. 114, 191803

Rate, Couplings: JHEP08 (2016) 045

HIGGS BOSON PRODUCTION AND DECAYS IN RUN I

Phys. Lett. B 726 (2013) Rate, Couplings: JHEP08 (2016) 045

$H\to\gamma\gamma~{\rm I}$

- Signature: 2 isolated γ, small peak on falling BG
- Categorize in production modes, extract signal by fit of $m_{\gamma\gamma}$
- Main BG: $\gamma\gamma$, γ -jet continuum production
- Dominant Systematic Uncert.: γ energy scale and resolution, choice of BG and photon ID uncertainty (smaller than stat. uncert.)

$H \to \gamma \gamma ~ { m II}$

Fiducial cross sections:

	$\sigma_{Fiducial}$ [fb]	SM pred. [fb]
ATLAS (13.3 fb $^{-1}$)	$43.2 \pm 14.9 (stat) \pm 4.9 (syst)$	62.8 ^{+3.4} _{-4.4} (N3LO+XH)
CMS (12.9 fb $^{-1}$)	$69^{+16}_{-22}({\sf stat})^{+8}_{-6}({\sf syst})$	73.8±3.8

 $\sigma_{\it Fiducial}$ uses event yields corrected for detector inefficiency and resolution for minimal theoretical modeling, different acceptance btw. ATLAS and CMS

Johannes Elmsheuser (BNL)

SM Higgs results from ATLAS+CMS

 $H \to \gamma \gamma ~ \text{III}$

Also a 2-parameter fit:

$H\to ZZ^*~{\rm I}$

- Signature: 2 pairs of isolated, oppositely charged, same flavour leptons (e, μ), narrow peak, flat BG
- All production modes
- Signal from fit in $m_{4\ell}$ distribution, enhance purity by additional kinematic discriminants
- Dominant Systematic Uncert: Luminosity and lepton SF (smaller than statistical uncertainty)

ATLAS-CONF-2016-079

CMS-PAS-HIG-16-033

 $H\to ZZ^*~\mathrm{II}$

Fiducial cross sections:

$$\begin{array}{c|c} & \sigma_{Fiducial} \ [fb] & \text{SM pred. [fb]} \\ \text{ATLAS (14.8 fb}^{-1}) & 4.54^{+1.02}_{-0.29} & 3.07^{+0.21}_{-0.25} \\ \text{CMS (12.9 fb}^{-1}) & 2.29^{+0.74}_{-0.64} (\text{stat})^{+0.30}_{-0.23} (\text{syst}) & 2.53\pm0.13 \end{array}$$

Combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$

ATLAS-CONF-2016-081

- Combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$
- σ_{obs} = 59.0^{+9.7}_{-9.2} (stat) ^{+4.4}_{-3.5} (syst) pb (σ_{SM} = 55.5^{+2.4}_{-3.4} pb) (inclusive signal yields, no categorization)
- $\mu_{obs} = 1.13^{+0.18}_{-0.17}$

Rate, Couplings: JHEP08 (2016) 045 CMS-PAS-HIG-15-003

Obs. (exp.) significance: 0.7σ (2.0 σ)

 $H \to \tau \tau$

JHEP 08 (2016) 045 JHEP 04 (2015) 117 JHEP 05 (2014) 104

ttH PRODUCTION I

- Probe top-Quark Higgs Yukawa coupling either in ggF(assuming no BSM particle in the loop) or directly in top-associated production
- ttH (bb)
- *ttH* (multileptons)
- $ttH (\gamma\gamma)$ (in $H \rightarrow \gamma\gamma$ analysis)

ttH PRODUCTION, ttH (bb) I

- Categorize event based on number of leptons, (b-)jets
- Main BG: tt+heavy flavour difficult theoretical description
- Dominant Systematic Uncert.: Signal and BG modelling/normalisation (larger than statistical uncertainty)

Uses BDT for Signal/BG separation in different categories

Uses 2D matrix element and BDT

CMS Preliminary

-0.8 -0.6 -0.4 -0.2 0 0.2

0 0.2 0.4 0.6 0.8 BDT (incl. MEM) discriminant

2.7 fb⁻¹ (13 TeV

ttH PRODUCTION, ttH (bb) II

Results:

SM Higgs results from ATLAS+CM

Johannes Elmsheuser (BNL)

ttH PRODUCTION, ttH (MULTILEPTONS) ATLAS-CONF-2016-058 CMS-PAS-HIG-16-022

- Signature: 2-4 leptons, >=2 jets, >=1 b-jet (allows also τ_{Had})
- Dominant Systematic Uncert.: fake lepton determination and non-prompt BG

ttH PRODUCTION, ttH (MULTILEPTONS)

Results:

ttH PRODUCTION, COMBINATION

ATLAS-CONF-2016-068

TTHCombMoriond2016

Johannes Elmsheuser (BNL)

significance of 1.5 σ

$tH ightarrow bar{b}$

CMS-PAS-HIG-16-019

$H ightarrow b ar{b}$

- Use this decay to establish Higgs to b-quark Yukawa coupling
- Extremely difficult because of the overwhelming QCD multi-jet production BG
- Use associated production channels for additional BG suppression:
 - VH: additional lepton and ∉_T
 - *ttH*: see before
 - VBF: 2 foward jets for event tagging

$VH ightarrow bar{b}$

- Use additional lepton from W/Z decays ($Z \rightarrow \nu \nu$, $W \rightarrow \ell \nu$, $Z \rightarrow \ell \ell$)
- Multivariant analysis to improve S/B
- Dominant BG: Z+b-jets, $t\bar{t}$
- Use m_{bb} and $\Delta R(b_1, b_2)$
- Dominant Systematic Uncert .: b-jet tagging eff., BG normalisation

$VH ightarrow b ar{b}$ II

Significance obs. (exp.):

- ATLAS (13 TeV): 0.4σ (1.9σ)
- ATLAS+CMS (8 TeV): 2.6σ (3.7σ)

Diboson validation:

- Extract diboson W(Z)Z signal strength as signal
- $\mu = 0.91 \pm 0.17$ (stat.) +0.32 -0.27(syst.)

VBF $H\to b\bar{b}$

- Larger cross section for VBF vs. VH
- Use VBF signature to discriminate multi-jet BG
- Fit in *m*_{bb} distribution

$H \to \mu \mu ~{\rm I}$

- Very rare Higgs decay: $B(H[125] \rightarrow \mu^+\mu^-) = 2.2 \times 10^{-4}$
- Strategy: Look for a narrow bump on top of continuous m_{μμ} background distribution
- Challenges: Irreducible background from $Z/\gamma^*
 ightarrow \mu\mu$
- Γ(H[125]) = 4.1 MeV signal width is dominated by detector resolution
- Categorize: ggF and VBF

 $H \to \mu \mu$ II

Obs. (exp.) upper limits:

- Run I: 7.1 (7.2) ×σ_{SM}
- Run II: 4.4 (5.5) ×σ_{SM}
- Combination: 3.5 (4.5) $\times \sigma_{SM}$

Mass resolution for $\mu^+\mu^-$ wider than for $\gamma\gamma$

DI-HIGGS BOSON PRODUCTION I

SM example I:

• $hh
ightarrow b ar{b} b ar{b}$

- Select 4 b-tagged jets
- Dominant Systematic uncert.: BG modelling and b-tagging
- Limit σ <330 fb, compared to SM prediction of 11.3±0.9 fb (29 times SM)

DI-HIGGS BOSON PRODUCTION II

SM example II:

- $hh \rightarrow b\bar{b}\tau^+\tau^-$
- Select 2 b-tagged jets and 3 $\tau\tau$ final states:

 $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$

- Dominant Systematic uncert.: BG modelling
- Obs. (exp.) limit σ <508 (420) fb which is about 200 (170) times SM prediction

PROJECTIONS

ATL-PHYS-PUB-2014-016

CMS-NOTE-2013-002

- ECFA workshop on-going this week 3-6 October 2016
- Several updates of projections for HL-LHC luminosity compared to here shown numbers

SUMMARY AND CONCLUSIONS

- LHC Run I brought the discovery of the Higgs boson with $m_H = 125.09 \pm 0.24$ GeV, consistent with Spin 0 and even parity and couplings consistent with SM
- Dataset from LHC Run II with even more Higgs bosons already recorded
- Analysis of Run II data at full swing expect higher precision

• Looking forward to exciting new results !

