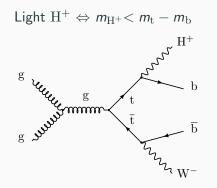
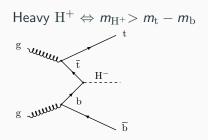
Search for charged Higgs bosons in CMS Part 1: 2HDM searches

Santeri Laurila

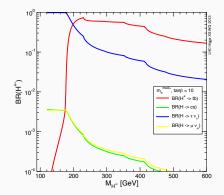
for the CMS Collaboration


Charged16 conference Uppsala, Sweden 4.10.2016



Beyond SM Higgs sector

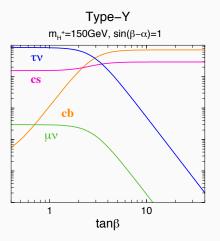
- Simple extension to SM Higgs sector: add second complex doublet \rightarrow 2HDM
 - e.g. Minimal Supersymmetric Standard Model (MSSM)
- 5 physical scalar Higgs bosons:
 - Neutral, CP-even h (light) and H (heavier)
 - Neutral, CP-odd A (pseudoscalar)
 - Charged Higgs bosons


NB! Charge conjugation implied throughout the talk!

2HDM H^+ searches at CMS

Run I (7-8 TeV)

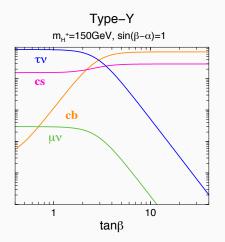
- ${
 m H}^+
 ightarrow au
 u$ (HIG-14-023, Charged14)
 - $\tau_{\rm h} + {\rm jets}, \ \mu \tau_{\rm h},$ lepton+jets, dilepton
- $\mathrm{H^+}
 ightarrow \mathrm{t}\overline{\mathrm{b}}$ (HIG-14-023, Charged14)
- $\mathrm{H^+} \rightarrow \mathrm{C}\overline{\mathrm{S}}$ (HIG-13-035, Charged14)



2HDM H^+ searches at CMS

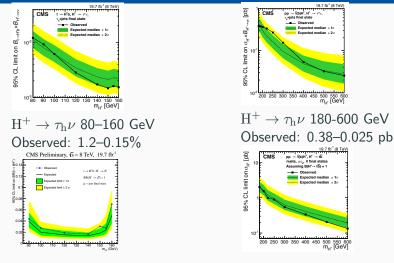
Run I (7-8 TeV)

- $\mathrm{H^+}
 ightarrow au
 u$ (HIG-14-023, Charged14)
 - $\tau_{\rm h} + {\rm jets}$, $\mu \tau_{\rm h}$, lepton+jets, dilepton
- $\mathrm{H^+} \rightarrow \mathrm{t}\overline{\mathrm{b}}$ (HIG-14-023, Charged14)
- $\mathrm{H^+}
 ightarrow \mathrm{CS}$ (HIG-13-035, Charged14)
- NEW: $\mathrm{H^+} \to \mathrm{c}\overline{\mathrm{b}}$ (HIG-16-030)


arXiv:0902.4665

2HDM H^+ searches at CMS

Run I (7-8 TeV)


- $\mathrm{H^+}
 ightarrow au
 u$ (HIG-14-023, Charged14)
 - $\tau_{\rm h} + {\rm jets}$, $\mu \tau_{\rm h}$, lepton+jets, dilepton
- $\mathrm{H^+}
 ightarrow \mathrm{t}\overline{\mathrm{b}}$ (HIG-14-023, Charged14)
- $\mathrm{H^+}
 ightarrow \mathrm{C}\overline{\mathrm{S}}$ (HIG-13-035, Charged14)
- NEW: $\mathrm{H^+} \to c\overline{b}$ (HIG-16-030)
- Run II (13 TeV)
 - NEW: ${\rm H^+} \to \tau_{\rm h} \nu$ with $\tau_{\rm h} + {\rm jets}$ (HIG-16-031)

arXiv:0902.4665

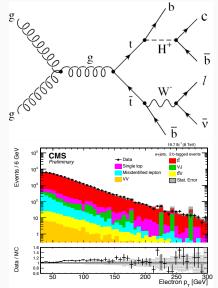
Charged14 / Run I summary

 ${\rm H^+} \rightarrow c\bar{s}$ 90–160 GeV Observed: 2–7%

 ${\rm H^+} \rightarrow t\overline{b}$ 180-600 GeV Observed: 2.0–0.13 pb

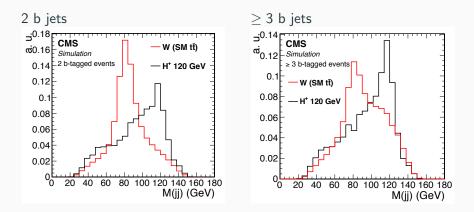
Run I: $\mathrm{H^+} \to c\overline{b}$ (HIG-16-030)

Analysis strategy

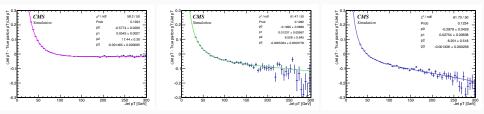


Event selection

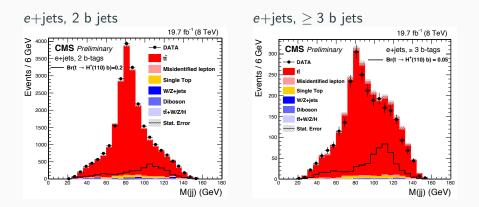
- \geq 4 jets (p_T > 30 GeV, $|\eta|$ < 2.4)
- \geq 2 b-jets
- 1 $e~(p_T>$ 30 GeV, $|\eta|<$ 2.5) or 1 $\mu~(p_T>$ 26 GeV, $|\eta|<$ 2.1)
- $E_T^{\text{miss}} \ge 20 \text{ GeV}$


Backgrounds

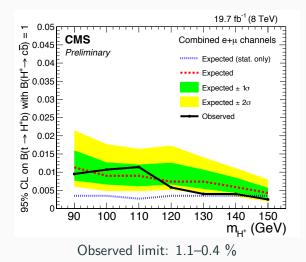
- tt, single top, EWK
 - simulation + corrections
- QCD multijet BG
 - Using data from control region (looser lepton isolation)
 - Normalization from a 2nd control region ($E_T^{\rm miss}$ < 20 GeV)


- Limits extracted from dijet invariant mass M(jj)
- Two event categories: 2 b jets and \geq 3 b jets

Jet corrections & kinematic fit

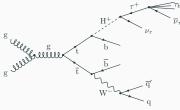


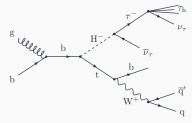
- In addition to standard jet energy corrections, parton specific corrections applied
 - Corrections from simulation as $\frac{p_T(\text{parton}) p_T(\text{jet})}{p_T(\text{jet})} + \text{fit}$
 - Fitted results are different for
 b jets (left), c jets (middle) and light-flavour jets (right)
- Kinematic fit used to resolve jet combinatorics
 - matching four leading jets to four quarks
 - takes into account jet momenta, non-clustered energy, the W mass and the masses of both top quarks


Dijet mass distributions

Exclusion limit

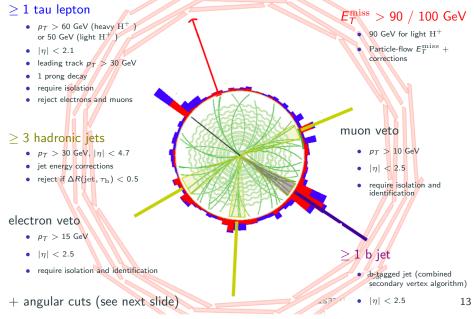
Limits from maximum likelihood fit using binned $M(\rm jj)$ templates, assuming $\rm H^+ \to c\overline{b}=1$


Run II: $\mathrm{H}^+ ightarrow au \nu$ with $au_\mathrm{h} + \mathrm{jets}$ (HIG-16-031)


Fully hadronic final state

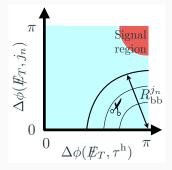
- $\bullet\,$ Light and heavy ${\rm H^+}$ have similar fully hadronic final state
 - $\rightarrow\,$ same analysis, but different selection thresholds
- $\bullet\,$ All neutrinos in the event come from ${\rm H^+}$ decay
 - $\rightarrow~$ limits can be extracted from transverse mass

$$m_T \equiv \sqrt{2p_T^{ ext{jet}}}E_t^{ ext{miss}}(1-\cos\Delta\phi)$$

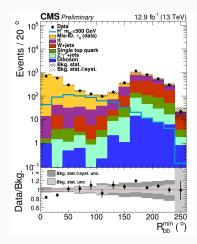


Light

Event selection

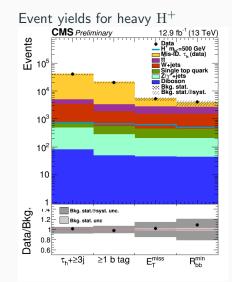


Angular cuts



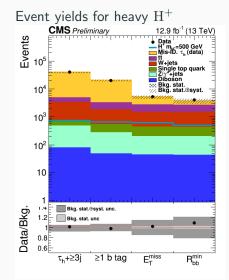
Define $R_{\rm bb}^{\rm min} \equiv \min \sqrt{(180^{o} - \Delta \phi(\tau, E_T^{\rm miss}))^2 + \Delta \phi(\text{jet}_n, E_T^{\rm miss})^2}$ where jet_N are the 3 highest- p_T jets

• Selection: $R_{\rm bb}^{\rm min} > 40^{\circ}$

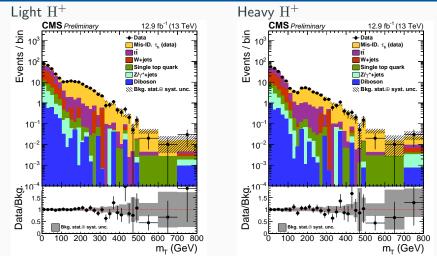


 To suppress QCD multijet BG after all other selections

Selection flow and backgrounds

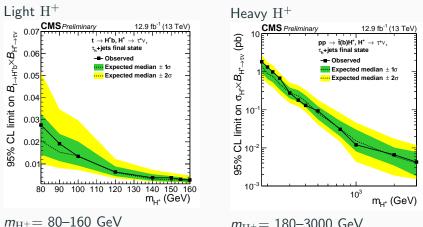


Selection flow and backgrounds



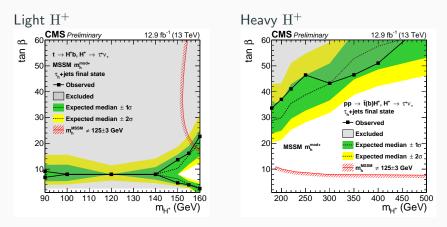
- EWK+tī genuine tau BG: from simulation
 - ttbar, W+jets, single top, Drell-Yan, diboson
- Fake tau BG: from data
 - Control sample from inverted tau selection
 - Data through the inverted tau selection $+ E_T^{\text{miss}}$ fit
 - Genuine tau BG through the signal selection $+ E_T^{miss}$ fit
 - Final fit assuming similar fake tau BG shape in signal and control regions

Transverse mass



Data and backgrounds normalized to best ML fit values

Exclusion limits

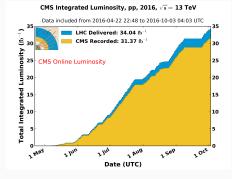

Observed limit: 2.8–0.28%

 $m_{{
m H}^+}{=}~180{-}3000~{
m GeV}$ Observed limit: 1.8–0.0042 pb

Obtained from maximum likelihood fit using binned m_T templates

Exclusion limits in MSSM $m_{ m h}^{ m mod+}$

Grey regions are excluded by the observed limit


Two recent results have been presented:

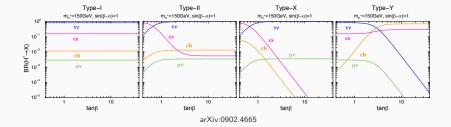
- + 8 TeV search for ${\rm H^+} \rightarrow c\overline{b}$ with 19.7 fb^{-1} of data
 - First CMS result on this channel
- 13 TeV search for ${
 m H}^+ o au_{
 m h}
 u \,$ with $au_{
 m h} + {
 m jets}$ with 12.9 fb⁻¹
 - First CMS 13 TeV result on light H^+ ,
- Observed limits agree with the standard model expectations

Two recent results have been presented:

- + 8 TeV search for ${\rm H^+} \rightarrow c\overline{b}$ with 19.7 fb^{-1} of data
 - First CMS result on this channel
- 13 TeV search for ${
 m H}^+ o au_{
 m h}
 u \,$ with $au_{
 m h} + {
 m jets}$ with 12.9 fb⁻¹
 - First CMS 13 TeV result on light H^+ ,
- Observed limits agree with the standard model expectations
- LHC expected to deliver 100 fb⁻¹ of 13 TeV data
- CMS has recorded >30 fb⁻¹ in 2016 and searches continue on many fronts

Two recent results have been presented:

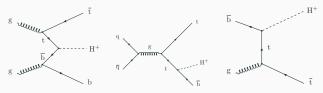
- 8 TeV search for ${\rm H^+} \rightarrow c\overline{b}$ with 19.7 fb^{-1} of data
 - First CMS result on this channel
- 13 TeV search for ${
 m H}^+ o au_{
 m h}
 u \,$ with $au_{
 m h} + {
 m jets}$ with 12.9 fb⁻¹
 - First CMS 13 TeV result on light H^+ ,
- Observed limits agree with the standard model expectations
- LHC expected to deliver 100 fb⁻¹ of 13 TeV data
- CMS has recorded >30 fb⁻¹ in 2016 and searches continue on many fronts


Back-up

2HDM models

Model	${\rm Type}\;{\rm I}$	${\rm Type}\;{\rm II}$	Lepton-specific	Flipped
Φ_1	_	d,ℓ	ℓ	d
Φ_2	u,d,ℓ	u	u, d	u, ℓ

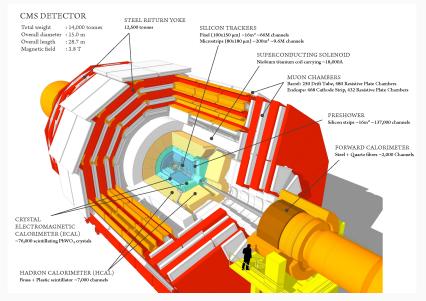
arXiv:1002.4916	arXiv:	1	00	2.	.49	16
-----------------	--------	---	----	----	-----	----



4FS vs. 5FS

- 4FS: No b quarks in the initial state \to Heavy $\rm H^+$ (in LO) by gg \to tbH^+ and and qq \to tbH^+
- 5FS: Gluon splitting processes summed to all orders by introducing b parton densities

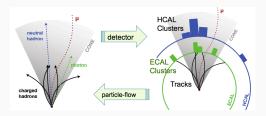
 $\rightarrow {\sf Heavy}~{\rm H^+}$ (in LO) by gb \rightarrow t ${\rm H^+}$ (right)


• Summing all orders, 4FS and 5FS yield identical results

- different ordering \rightarrow different results dierent at finite order
- 4FS and the 5FS NLO predictions combined with Santander matching

$$\sigma^{\text{matched}} = \frac{\sigma^{\text{4FS}} + w \times \sigma^{\text{5FS}}}{1 + w}$$
 with $w = \ln \frac{m_{\text{H}^{\pm}}}{m_{\text{b}}} - 2$

CMS detector



Particle flow algorighm combines information from various CMS subdetectors to reconstruct objetcs

- Muons by combining information from the tracker and the muon chambers
- Electrons by matching energy deposits in the ECAL with tracker tracks
- Jets using the anti-kT algorithm with R=0.4 (0.5 for Run I)
 - hadronic taus using hadron-plus-strips algorighm
 - b jets using combined secondary vertex
- E_T^{miss} as the negative vector sum of the of all objects

$\mathrm{H^+} \rightarrow c\overline{b}$: Kinematic fit

- Uses four leading jets with parton-spesific corrections
- Minimize

$$\begin{split} \chi^2 &= \sum_{i=l, A_{jels}} \frac{(p_{T}^{i, fit} - p_{T}^{i, meas})^2}{\sigma_t^2} + \sum_{j=x,y} \frac{(p_j^{NE, fit} - p_j^{NE, meas})^2}{\sigma_{NE}^2} \\ &+ \frac{(M_{l\nu} - M_W)^2}{\Gamma_W^2} + \frac{(M_{bl\nu} - M_t)^2}{\Gamma_t^2} + \frac{(M_{bbc} - M_t)^2}{\Gamma_t^2}. \end{split}$$

where non-clustered energy is

$$\textit{NE}_{x,y} = -p_{x,y}(\textit{lepton}) - \sum_{\textit{jets}(p_T > 10\,\text{GeV})} p_{x,y} - E_T^{\textit{miss}}{}_{x,y}$$

- All p_T and non-clustered energy varied
 - top mass constrained to 172.5 GeV, W mass to 80.4 GeV
- E_T^{miss} recalculated from after the fit
- b jets assigned to top/W/ $\mathrm{H^{+}}$ decays a priori in some cases
 - e.g. in events with 2 b jets, both are assigned to top decays
- Goodness cuts to improve matching
 - $|p_T^{\rm in} p_T^{\rm fitted}| <$ 20 GeV for each jet
 - *M*(hadronic top before fit) < 200 GeV

${\rm H^+} \rightarrow c\overline{b}:$ Systematic uncertainties

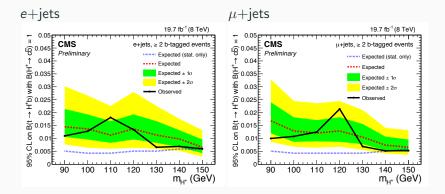
Source of uncertainty	signal ($m_H = 120$)		tť		non-tī		QCD multijet	
	2 b-tag	3 b-tag	2 b-tag	3 b-tag	2 b-tag	3 b-tag	2 b-tag	3 b-tag
tt cross section	6.5	20	6.5	20				
Top quark mass	5 (s)	5 (s)	5 (s)	5 (s)				
tt p _T reweighting	(s)	(s)	(s)	(s)				
NLO-vs-LO shape	8.5–9.0 (s)	7.6-8.8 (s)	8.3-8.5 (s)	8.0 (s)				
(Powheg-vs-MadGraph)	0.3-9.0 (S)	7.0-0.0 (S)	0.3-0.3 (S)	0.0 (S)				
PYTHIA–MADGRAPH $p_T(t\bar{t})$ difference	(s)	(s)						
ME-PS matching			0.6-0.8 (s)	0.8–1.4 (s)				
Renormalization and factorization scales	4.0-4.2 (s)	6.8–7.2 (s)	1.3-1.7 (s)	1.3-2.0 (s)				
Jet energy scale (JES)	4.6-5.3 (s)	5.0–5.9 (s)	3.4 (s)	3.3 (s)	7.5–9.6 (s)	0.9-2.8 (s)		
Flavour-dependent JES (b quark)	0.3-0.4 (s)	0.2-0.6 (s)	0.1 (s)	9.0 (s)	0.1-0.7 (s)	0.5-0.9 (s)		
Flavour-dependent JES (udsc,g)	0.9–1.2 (s)	0.4-0.6 (s)	1.0 (s)	9.0 (s)	3.1-4.1 (s)	1.1–1.8 (s)		
Jet energy resolution	0.1-0.2 (s)	0.2–0.8 (s)	0.3 (s)	0.4 (s)	1.1 (s)	1.5 (s)		
B-tag scale factor for b/c quark jets	1.2-2.1	5.6-5.8	3.6	5.7	2.9-3.0	4.0 - 4.4		
Mis-tag scale factor for light quark jets	0.1-0.2	0.2-0.7	0.2	0.3-0.7	0.7-1.3	0.3 - 0.4		
Pileup reweighting	≈ 0.5			1				
Electron scale factor (e+jets)	2.0						1	
Muon scale factor (μ +jets)	2.0							
Luminosity	2.6							
Data driven prediction							Shift anti-I	so _{rel} region (s)

- tī xsect: NNLO calculation \rightarrow 6.5%, for \geq 3 b jets case 20% (due to observed data-vs-simulation difference)
- Top mass: vary from 171.5 GeV to 173.5 GeV
- NLO-vs-LO for tī: MadGraph (LO, in use), uncertainty by comparing to Powheg (NLO)
- Renormalization and factorization scales: vary up/down by a factor of 2 (to estimate beyond-LO contributions to $t\bar{t}$)
- Jet Energy Scale (see arXiv:1107.4277)

26

Physics model used in limit calculation is

 $\mu_i = \mu_i(non - t\bar{t}) + (1 - BR)^2 \times \mu_i(t\bar{t} \to WbW^-\overline{b}) + 2 \times BR \times (1 - BR) \times \mu_i(t\bar{t} \to H^+bW^-\overline{b}).$


where

- BR is $B(t \rightarrow H^+ b)$
- μ_i is the number of events in dijet mass bin *i*

SM $\ensuremath{t\bar{t}}\xspace$ background is scaled down in case of non-zero signal!

${\rm H^+} \rightarrow c\overline{b}$: Exclusion limits

Limits from maximum likelihood fit using binned $M(\rm jj)$ templates, assuming $\rm H^+ \to c\overline{b} = 1$

${\rm H^+} ightarrow \tau_{\rm h} \nu$: Tau decays

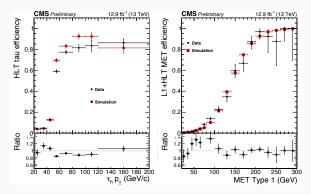
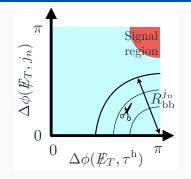

Final state	$\mathcal{B}(\%)$	$\Sigma \mathcal{B}$ (%)
leptonic modes		35.9
$\tau^- \to e + \overline{\nu}_e \nu_{\tau}$	17.9	
$\tau^- \to \mu + \overline{\nu}_\mu \ \nu_\tau$	17.4	
hadronic modes		
one-prong (excluding modes with K^0)		48.1
$\tau^- \rightarrow h^- \nu_{\tau}$	11.6	
$\tau^- \to \rho^- \nu_{\tau} \to h^- \pi^0 \nu_{\tau}$	26.0	
$\tau^- \rightarrow a_1^- \nu_{\tau} \rightarrow h^- \pi^0 \pi^0 \nu_{\tau}$	9.3	
$\tau^- \rightarrow h^- \nu_{\tau} + \geq 3\pi^0$	1.3	
three-prong (excluding modes with K^0)		14.6
$\tau^- \rightarrow a_1^- \nu_{\tau} \rightarrow 2h^-h^+ \nu_{\tau}$	9.7	
$\tau^- \rightarrow 2 h^- h^+ \nu_\tau + \geq 1 \pi^0$	5.2	
five-prong (excluding modes with K^0)		0.1
$\tau^- \rightarrow 3h^-2h^+ \ \nu_{\tau} \ge 0 \ \pi^0$	0.1	
hadronic modes including K ⁰		2.0
$\tau^- \to K^0_S + X$	0.9	
$\tau^- \to K_L^0 + X$	1.1	

Table 1: Final states and corresponding branching fractions of single τ lepton decays. The uncertainty of the branching fractions is 0.1 percent units or smaller. [14]

${\rm H^+} ightarrow \tau_{\rm h} \nu$: Trigger

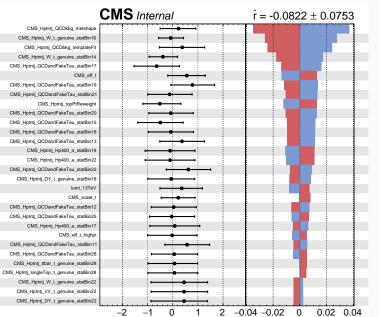


- Tau trigger: Hadronic tau with $p_T>50$ GeV, $|\eta|<2.1$ and leading charged hadron with $p_T>30$ GeV
- E_T^{miss} trigger: calorimetric $E_T^{\text{miss}} > 90 \text{ GeV}$
- Efficiency of the tau part (left) and E_T^{miss} part (right) of the trigger measured independently, MC samples corrected by scale factors

${\rm H^+} \rightarrow \tau_{\rm h} \nu$: Angular cuts

$$\begin{split} R_{\rm bb}^{\rm min} &= \min \sqrt{(180^{o} - \Delta \phi(\tau, E_T^{\rm miss}))^2 + \Delta \phi(\operatorname{jet}_n, E_T^{\rm miss})^2 } \\ \text{where } \operatorname{jet}_N \text{ are} \\ \text{the 3 highest-} p_T \text{ jets} \end{split}$$

Selection: $R_{\rm bb}^{\rm min} > 40^{\circ}$


- Used to suppress QCD multijet background after all other selections
- Working principle:
 - tau \bar{p}_{T} is typically back-to-back to $\bar{E}_{T}^{\rm miss}$

$$ightarrow \Delta \phi(E_T^{
m miss}, au) pprox 180^o$$

- \rightarrow large m_T
- jet faking tau is typically back-to-back to another jet $\rightarrow \Delta \phi(E_T^{miss}, jet) \approx 0$

${\rm H^+} ightarrow \tau_{\rm h} \nu$: Systematics

${\rm H^+} \rightarrow \tau_{\rm h} \nu$: Fake tau measurement

- Control sample from inverted tau selection
 - \rightarrow orthogonal sample dominated by fake taus
- Data processed through the inverted selection + $E_{\mathcal{T}}^{\mathrm{miss}}$ fit
- EWK+ttbar BG through the signal selection + $E_T^{\rm miss}$ fit
- Done in tau p_T bins due to correlation of tau p_T and E_T^{miss}
- Final fit: use the $E_{\mathcal{T}}^{\rm miss}$ templates obtained to estimate fake tau BG in the signal region
 - Assumes similar QCD shape in signal and control regions

 τ

• Transfer factors R_i from control region to signal region:

$$R_{i} = w_{i}R_{i}^{QCD} + (1 - w_{i})R_{i}^{EWK+ \text{ fake}}$$
where $R_{i}^{QCD} \equiv \frac{N_{Baseline,i}^{QCD}}{N_{Inverted,i}^{QCD}}$,
$$R_{i}^{EWK+ \text{ fake } \tau} \equiv \frac{N_{Baseline,i}^{EWK+ \text{ fake } \tau}}{N_{Inverted,i}^{EWK+ \text{ fake } \tau}}$$
,
$$N_{i}^{QCD}$$

Inverted

Physics model for light H^+ is

$$s_i(\mu, \mathbf{\Theta}) = \mu^2 \times s_{\mathrm{HH},i}(\mathbf{\Theta}) + 2\mu(1-\mu) \times s_{\mathrm{HW},i}(\mathbf{\Theta}) + (1-\mu^2) \times s_{\mathrm{WW},i}(\mathbf{\Theta}),$$

where μ is defined as

$$\mu = \mathcal{B}(t \to bH^+)\mathcal{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau}).$$

and for heavy H^+ it is

$$s_i(\mu, \Theta) = \mu \times s_{\tau\nu,i}(\Theta),$$

where μ is

$$\mu = \sigma_{\mathrm{pp} \to \mathrm{t(b)H^{\pm}}} \times \mathcal{B}(\mathrm{H^{\pm}} \to \tau^{\pm} \nu_{\tau}).$$

In equations, s_i is the total event yield (in m_T bin i) and $s_{process,i}$ are background yields due to different BG processes (in m_T bin i).