

LHC result interpretation in multi-Higgs SUSY models: MSSM, NMSSM, hMSSM, ...

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

Uppsala, 10/2016

- Introduction
- Relevance of SUSY Higgs Mass Calculations
- Higgs boson mass scales from rate measuements?
- MSSM results (CMSSM, NUHM1/2, hMSSM, pMSSM)
- NMSSM results
- Conclusions

1. Introduction

Fact:

The SM cannot be the ultimate theory!

- 1. gravity is not included
- 2. the hierarchy problem
- 3. Dark Matter is not included
- 4. neutrino masses are not included
- 5. anomalous magnetic moment of the muon shows a \sim 4 σ discrepancy
- \Rightarrow Time to get ready for BSM physics

Which model should we focus on?

Some "recent" measurements:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

Which model should we focus on?

Some "recent" measurements:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

Simple SUSY models predicted correctly:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

Which model should we focus on?

Some "recent" measurements:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

Simple SUSY models predicted correctly:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

\Rightarrow good motivation to look at SUSY! :-)

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

$$\begin{bmatrix} u, d, c, s, t, b \end{bmatrix}_{L,R} \begin{bmatrix} e, \mu, \tau \end{bmatrix}_{L,R} \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} & \text{Spin } \frac{1}{2} \\ \begin{bmatrix} \tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b} \end{bmatrix}_{L,R} & \begin{bmatrix} \tilde{e}, \tilde{\mu}, \tilde{\tau} \end{bmatrix}_{L,R} & \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} & \text{Spin } 0 \\ g & \underbrace{W^{\pm}, H^{\pm}}_{\tilde{\chi}_{1,2}} & \underbrace{\gamma, Z, H_{1}^{0}, H_{2}^{0}}_{\tilde{\chi}_{1,2,3,4}} & \text{Spin } 1 \text{ / Spin } 0 \\ \begin{bmatrix} \tilde{g} & \tilde{\chi}_{1,2}^{\pm} & \tilde{\chi}_{1,2,3,4}^{0} & \text{Spin } \frac{1}{2} \end{bmatrix}$$

Enlarged Higgs sector: Two Higgs doublets Problem in the MSSM: many scales \Leftarrow focus here!

Problem in the MSSM: complex phases

Data we have:

Higgs boson mass (LHC)

- Higgs boson mass (LHC)
- Higgs boson signal strengths (LHC) \Rightarrow HiggsSignals

- Higgs boson mass (LHC)
- Higgs boson signal strengths (LHC) \Rightarrow HiggsSignals
- Higgs boson exclusion bounds (LHC, Tevatron, LEP) \Rightarrow HiggsBounds

- Higgs boson mass (LHC)
- Higgs boson signal strengths (LHC) \Rightarrow HiggsSignals
- Higgs boson exclusion bounds (LHC, Tevatron, LEP) \Rightarrow HiggsBounds
- SUSY searches (LHC)

- Higgs boson mass (LHC)
- Higgs boson signal strengths (LHC) \Rightarrow HiggsSignals
- Higgs boson exclusion bounds (LHC, Tevatron, LEP) \Rightarrow HiggsBounds
- SUSY searches (LHC)

- electroweak precision data
- flavor data
- astrophysical data

2. Relevance of SUSY Higgs Mass Calculations

The Higgs mass accuracy: experiment vs. theory: Experiment:

ATLAS:	$M_h^{\rm exp} = 125.36 \pm 0.37 \pm 0.18 ~{ m GeV}$
CMS:	$M_h^{\rm exp} = 125.03 \pm 0.27 \pm 0.15 ~{ m GeV}$
combined:	$M_h^{\text{exp}} = 125.09 \pm 0.21 \pm 0.11 \text{ GeV}$

2. Relevance of SUSY Higgs Mass Calculations

The Higgs mass accuracy: experiment vs. theory: Experiment:

ATLAS:	$M_h^{\rm exp} = 125.36 \pm 0.37 \pm 0.18 ~{ m GeV}$
CMS:	$M_h^{\rm exp} = 125.03 \pm 0.27 \pm 0.15 ~{ m GeV}$
combined:	$M_h^{\exp} = 125.09 \pm 0.21 \pm 0.11 \text{ GeV}$

MSSM theory:

LHCHXSWG adopted FeynHiggs for the prediction of MSSM Higgs boson masses and mixings (considered to be the code containing the most complete implementation of higher-order corrections)

FeynHiggs:
$$\delta M_h^{\text{theo}} \sim 3 \text{ GeV}$$

 \rightarrow rough estimate, FeynHiggs contains algorithm to evaluate uncertainty, depending on parameter point

Working group on M_h predictions:

sites.google.com/site/kutsmh

Katharsis of Ultimate Theory Standards

6th meeting: 23.-25. January 2017, Aachen (Germany)

Precise Calculation of

Higgs Boson masses

Organized by: M. Carena, H. Haber R. Harlander, S. Heinemeyer /. Hollik, P. Slavich, G. Weiglein

Enlarged Higgs sector: Two Higgs doublets

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{2}^{+} \\ \phi_{2}^{+} \\ v_{2} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix}$$

 $V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$

$$+\underbrace{\frac{{g'}^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM

physical states: h^0, H^0, A^0, H^{\pm}

Goldstone bosons: G^0, G^{\pm}

Input parameters: (to be determined experimentally)

$$\tan \beta = \frac{v_2}{v_1}, \qquad M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$$

\tilde{t} sector of the MSSM:

Stop mass matrices

$$\mathbf{M}_{\tilde{t}}^2 = \begin{pmatrix} M_{\tilde{t}_L}^2 + m_t^2 + DT_{t_1} & m_t X_t \\ m_t X_t & M_{\tilde{t}_R}^2 + m_t^2 + DT_{t_2} \end{pmatrix} \xrightarrow{\theta_{\tilde{t}}} \begin{pmatrix} m_{\tilde{t}_1}^2 & \mathbf{0} \\ \mathbf{0} & m_{\tilde{t}_2}^2 \end{pmatrix}$$

with

$$X_t = A_t - \mu / \tan \beta$$

 \Rightarrow mixing important in stop sector!

Simplifying abbreviation:

$$M_{\mathsf{SUSY}} := M_{\tilde{t}_L} = M_{\tilde{t}_R}$$

 $\Rightarrow M_h \sim 125 \text{ GeV}$ requires large X_t and/or large M_{SUSY} \Rightarrow results depend strongly on your M_h calculation/precision! Tree-level result for m_h , m_H :

$$m_{H,h}^{2} = \frac{1}{2} \left[M_{A}^{2} + M_{Z}^{2} \pm \sqrt{(M_{A}^{2} + M_{Z}^{2})^{2} - 4M_{Z}^{2}M_{A}^{2}\cos^{2}2\beta} \right]$$

 $\Rightarrow m_h \leq M_Z$ at tree level

 \Rightarrow Light Higgs boson h required in SUSY

For this workshop:

$$m_{\mathsf{H}^{\pm}}^2 = M_A^2 + M_W^2$$

Measurement of m_h , Higgs couplings

 \Rightarrow test of the theory (more directly than in SM)

Method I:

Higher-order corrections in the Feynman diagrammatic method:

Propagator/Mass matrix at tree-level:

$$\left(\begin{array}{cc} q^2 - m_H^2 & 0\\ 0 & q^2 - m_h^2 \end{array}\right)$$

Propagator / mass matrix with higher-order corrections (\rightarrow Feynman-diagrammatic approach):

$$M_{hH}^{2}(q^{2}) = \begin{pmatrix} q^{2} - m_{H}^{2} + \hat{\Sigma}_{HH}(q^{2}) & \hat{\Sigma}_{Hh}(q^{2}) \\ \\ \hat{\Sigma}_{hH}(q^{2}) & q^{2} - m_{h}^{2} + \hat{\Sigma}_{hh}(q^{2}) \end{pmatrix}$$

 $\hat{\Sigma}_{ij}(q^2)$ (i, j = h, H) : renormalized Higgs self-energies *CP*-even fields can mix

 \Rightarrow complex roots of det $(M_{hH}^2(q^2))$: $\mathcal{M}_{h_i}^2(i=1,2)$: $\mathcal{M}^2 = M^2 - iM\Gamma$

Calculation of renormalized Higgs boson self-energies:

 $\widehat{\Sigma}(q^2) = \widehat{\Sigma}^{(1)}(q^2) + \widehat{\Sigma}^{(2)}(q^2) + \dots \qquad \Rightarrow \text{Heidi's talk}$

all MSSM particles contribute main contribution: t/\tilde{t} sector (\tilde{t} : scalar top, SUSY partner of the t)

2-Loop:

To avoid large corrections:

On-shell renormalization of the scalar top sector $\Rightarrow X_t^{OS}$

$$\sim m_t^4 \left[\log^2 \left(\frac{m_{\tilde{t}}}{m_t} \right) + \log \left(\frac{m_{\tilde{t}}}{m_t} \right) \right]$$

Structure of higher-order corrections:

One-loop:
$$\Delta M_h^2 \sim m_t^2 \alpha_t \left[L + L^0 \right] , \quad L := \log \left(\frac{m_{\tilde{t}}}{m_t} \right)$$

Two-loop:
$$\Delta M_h^2 \sim m_t^2 \left\{ \alpha_t \alpha_s \left[L^2 + L + L^0 \right] + \alpha_t^2 \left[L^2 + L + L^0 \right] \right\}$$

$$\Delta M_h^2 \sim m_t^2 \Big\{ \begin{array}{c} \alpha_t \alpha_s^2 \left[L^3 + L^2 + L + L^0 \right] \\ + \alpha_t^2 \alpha_s \left[L^3 + L^2 + L + L^0 \right] \\ + \alpha_t^3 \left[L^3 + L^2 + L + L^0 \right] \Big\} \end{array}$$

Partial results: [S. Martin '07]

[R. Harlander, P. Kant, L. Mihaila, M. Steinhauser '08] \Rightarrow H3m

H3m adds $\mathcal{O}\left(\alpha_t \alpha_s^2\right)$ corrections to FeynHiggs

Large $m_{\tilde{t}} \Rightarrow$ large $L \Rightarrow$ resummation of logs necessary \Rightarrow Method II

Method II: EFT approach: Log resummation via RGE's:

Excellent overview paper: [P. Draper, G. Lee, C. Wagner, arXiv:1312.5743]

Simple example for log resummation:

SUSY mass scale: $M_{SUSY} = M_S \sim m_{\tilde{t}}$

Above M_{SUSY} : MSSM Below M_{SUSY} : SM

Relevant SM parameters: – quartic coupling λ

- top Yukawa coupling h_t ($\alpha_t = h_t^2/(4\pi)$)
- strong coupling constant g_s ($\alpha_s = g_s^2/(4\pi)$)
- **1.** Take: $h_t(m_t), g_s(m_t)$

SM RGEs for $h_t, g_s: h_t, g_s(m_t) \to h_t, g_s(M_S)$

- 2. Take $\lambda(M_S), h_t(M_S), g_s(M_S)$ SM RGEs for $\lambda, h_t, g_s: \lambda, h_t, g_s(M_S) \rightarrow \lambda, h_t, g_s(m_t)$
- 3. Evaluate M_h^2 $M_h^2 \sim 2\lambda(m_t)v^2$

$$\Delta M_h^2 = (\Delta M_h^2)^{\mathsf{RGE}} (X_t^{\overline{\mathsf{MS}}}, M_S^{\overline{\mathsf{MS}}}, \overline{m}_t) - (\Delta M_h^2)^{\mathsf{FD},\mathsf{LL1},\mathsf{LL2}} (X_t^{\mathsf{OS}}, M_S^{\mathsf{OS}}, \overline{m}_t)$$
$$M_h^2 = (M_h^2)^{\mathsf{FD}} + \Delta M_h^2$$

Technical aspect:

$$(\Delta M_h^2)^{\mathsf{FD},\mathsf{LL1},\mathsf{LL2}}(X_t^{\mathsf{OS}}, M_S^{\mathsf{OS}}, \overline{m}_t)$$

$$:= (\Delta M_h^2)^{\mathsf{FD},\mathsf{LL1},\mathsf{LL2}}(X_t^{\overline{\mathsf{MS}}}, M_S^{\overline{\mathsf{MS}}}, \overline{m}_t)|_{X_t^{\overline{\mathsf{MS}}} \to X_t^{\mathsf{OS}}, M_S^{\overline{\mathsf{MS}}} = M_S^{\mathsf{OS}}}$$

⇒ combination of best FD result with
resummed LL, NLL corrections for large
$$m_{\tilde{t}}$$

⇒ most precise M_h prediction for large $m_{\tilde{t}}$ ⇒ FeynHiggs 2.10.0
[T Hahn S H W Hollik H Bzehak G Weiglein '13][H Bahl W Hollik '16]

Possible & necessary refinements of the EFT calculation:

- Inclusion of EWino mass scale in RGE's
- Inclusion of gluino mass scale in RGE's
- Inclusion of EW effects in RGE's
- Inclusion of 3-loop RGEs plus 2-loop thresholds etc.
- "Two Higgs Doublet Model" below M_S
- Splitting in the scalar top sector

• . . .

Possible & necessary refinements of the EFT calculation:

- Inclusion of EWino mass scale in RGE's ⇒ included into FeynHiggs
- Inclusion of gluino mass scale in RGE's ⇒ included into FeynHiggs
- Inclusion of EW effects in RGE's
 ⇒ included into FeynHiggs
- Inclusion of 3-loop RGEs plus 2-loop thresholds etc.
 ⇒ included into FeynHiggs
- "Two Higgs Doublet Model" below M_S \Rightarrow work in progress for FeynHiggs , only code so far: MhEFT
- Splitting in the scalar top sector
 ⇒ future work

• • • •

 \Rightarrow Heidi's talk

2HDM as low-energy theory: MhEFT

 $\Rightarrow M_h = 125 \text{ GeV}$ and low M_A , tan β cannot "everywhere" be realized! \Rightarrow impact for charged Higgses?!

Codes on the market:

- 1.) Fixed order codes: good for all scales low
- SuSpect
- SPheno/SARAH
- SoftSUSY/FlexibleSUSY
- H3m
- 2.) EFT codes: good for all scales high
- SusyHD
- MhEFT
- HSSUSY
- 3.) Hybrid codes: good always?!
- FeynHiggs
- FlexibleEFTHiggs

Obviously: quality depends on the details implemented

3. Higgs boson mass scales from rate measuements?

- We have a \sim 125 GeV SM-like Higgs boson
- \Rightarrow What are the options?
 - 1. Decoupling limit:

 $M_A \gg M_Z \Rightarrow$ the light Higgs becomes SM-like

2. Alignment without decoupling:

 \Rightarrow a \mathcal{CP} -even Higgs becomes SM-like due to an "accidental" cancellation

- 3. Heavy Higgs SM-like: (see above!)
 - \Rightarrow is the case with the heavy CP-even Higgs being SM-like still a viable solution?

Obtaining a light Higgs with SM-like couplings

[J. Gunion, H. Haber, hep-ph/0207010]

 $\rightarrow \mathcal{CP} \text{ conserving 2HDM in the Higgs basis } (\langle H_1 \rangle = v/\sqrt{2}, \langle H_2 \rangle = 0)$ $\mathcal{V} = \ldots + \frac{1}{2}Z_1(H_1^{\dagger}H_1)^2 + \ldots + \left[\frac{1}{2}Z_5(H_1^{\dagger}H_2)^2 + Z_6(H_1^{\dagger}H_1)(H_1^{\dagger}H_2) + \text{h.c.}\right] + \ldots$

 $\Rightarrow CP$ -even mass matrix:

$$\mathcal{M}^{2} = \begin{pmatrix} Z_{1}v^{2} & Z_{6}v^{2} \\ Z_{6}v^{2} & M_{A}^{2} + Z_{5}v^{2} \end{pmatrix}$$

with mixing angle $\cos(\beta - \alpha) \equiv c_{\beta - \alpha}$

Alignment limit: see e.g.

[M. Carena, I. Low, N. Shah, C. Wagner '13][M. Carena, H. Haber, I. Low, N. Shah, C. Wagner '14]

In the MSSM $Z_6 = 0$ can be obtained through an "accidental" cancellation between tree-level and loop contribution, roughly at:

$$\tan\beta \sim \left[M_h^2 + M_Z^2 + \frac{3m_t^2\mu^2}{4\pi^2 v^2 M_S^2} \left(\frac{A_t^2}{2M_S^2} - 1\right)\right] / \left[\frac{3m_t^2}{4\pi^2 v^2} \frac{\mu A_t}{M_S^2} \left(\frac{A_t^2}{6M_S^2} - 1\right)\right]$$

Compare: $m_h^{\text{mod}+}$ and m_h^{alt} : $A_t/M_S = 2.45$, $A_t = A_f$, $M_S = m_{\tilde{f}} \ge 1$ TeV, $m_{\tilde{g}} = 1.5$ TeV, $M_2 = 2 M_1 = 200$ GeV, μ adjustable (low M_A and tan β : tune $M_S \ge 1$ TeV to obtain $M_h \ge 122$ GeV) \Rightarrow SM-like Higgs for all M_A

\Rightarrow no Higgs mass scale restrictions from rates (in general)

4. Results in the MSSM

MSSM versions:

CMSSM: m_0 , $m_{1/2}$, A_0 , $\tan\beta$ (+sign μ)

NUHM1: m_0 , $m_{1/2}$, A_0 , $\tan\beta$, M_A or μ (+sign μ)

NUHM2: m_0 , $m_{1/2}$, A_0 , $\tan\beta$, M_A and μ (+sign μ)

hMSSM: $M_h = 125$ GeV, everything very heavy, except M_A

pMSSM8: 8 free parameters . . .

CMSSM, NUHM1, NUHM2 analysis: MasterCode

⇒ collaborative effort of theorists and experimentalists
[Bagnaschi, Borsato, Buchmüller, Cavanaugh, Chobanova, Citron, Costa, De Roeck, Dolan, Ellis, Flächer, SH, Isidori, Lucio, Mallik, Marouche, Martinez Santos, Olive, Richards, Sakurai, Weiglein]

- (so far) one model: (MFV) MSSM
- tools included:
 - our own LHC SUSY search (Run I) implementation \Rightarrow NEW (3 search categories: colored, electroweak, compressed stop)
 - Higgs related observables, $(g-2)_{\mu}$ [FeynHiggs]
 - Higgs signal strengths [HiggsSignals]
 - Higgs exclusion bounds [HiggsBounds]
 - *B*-physics observables [*SuFla*]
 - more *B*-physics observables [*SuperIso*]
 - Electroweak precision observables [FeynWZ]
 - Dark Matter observables [MicrOMEGAs, SSARD]
 - for GUT scale models: RGE running [SoftSusy]

 \Rightarrow all most-up-to-date codes on the market!

 \Rightarrow crucial for precision!

 \Rightarrow NFW

 \Rightarrow NEW

M_A -tan β plane in CMSSM, NUHM1, NUHM2:

[2015]

 \Rightarrow high mass scales, only in NUHM2 lighter Higgs bosons . . .

[2015]

 \Rightarrow high mass scales, only in NUHM2 lighter Higgs bosons . . .

hMSSM [A. Djouadi, L. Maiani, G. Moreau, A. Polosa, J. Quevellion, V. Riquer '13]

Assumptions:

- MSSM
- $-M_h = 125 \text{ GeV}$
- only Higgs sector could be light, all SUSY particles heavy \Rightarrow no SUSY effects in loops
- ⇒ trade M_h for ΔM_{hH}^2 ⇒ calculate M_H and α ⇒ calculate M_A and $M_{H^{\pm}}$ via tree-level formulas

What to expect?

- deviations in g_{hVV} , g_{htt} and g_{hbb}
- decoupling with M_A , nearly independent of $\tan\beta$

Personal opinion: a particularly boring scenario \Rightarrow hMSSM cannot be realized for low M_A and tan β (MhEFT) \Rightarrow Alignment without decoupling cannot be realized!

ATLAS results for the hMSSM

\Rightarrow as expected...

CMS results for the hMSSM

\Rightarrow as expected...

Results in the pMSSM8

[P. Bechtle, H. Haber, S.H., O. Stål, T. Stefaniak, G. Weiglein, L. Zeune '16]

- decoupling, $M_h = 125 \text{ GeV}$
- alignment without decoupling, $M_h = 125 \text{ GeV}$
- "heavy Higgs" case, $M_H = 125 \text{ GeV}$, h lighter

	Min	Max	$M_{Q_{1,2}} = M_{U_{1,2}} = M_{D_{1,2}} = 1.5$ TeV
M _A	90 GeV	1000 GeV	$M_{D_3} = M_{U_3} = M_{Q_3}$
aneta	1	60	$M_{L_{1,2}} = M_{E_{1,2}}$
M_{Q_3}	200 GeV	5000 GeV	$A_b = A_\tau = A_t$
A_t	$-3M_{Q_{3}}$	$+3M_{Q_{3}}$	$M_3 = 1.5 \text{ TeV}$
μ	$-3M_{Q_{3}}$	$+3M_{Q_{3}}$	M_1 fixed by GUT relation
M_{L_3}	200 GeV	1000 GeV	10 ⁷ random points
$M_{L_{1,2}}$	200 GeV	1000 GeV	$\Sigma_{i}[\sigma_{i}(\phi) \times BR(\phi \rightarrow XX)]_{MSSM}$
<i>M</i> ₂	200 GeV	500 GeV	$\mathbf{n}_{XX} := \overline{\Sigma_i[\sigma_i(\phi) \times BR(\phi \to XX)]_{SM}}$

Our tools:

use FeynHiggs-2.10.2 and SuperIso-3.3 for MSSM predictions.

Construct global χ^2 from observables:

- Higgs mass and signal rates (HiggsSignals-1.4.0)
- Low energy observables (LEO): $b \rightarrow s\gamma$, $B_s \rightarrow \mu\mu$, $B_u \rightarrow \tau\nu$, $(g-2)_{\mu}$, M_W
- exclusion likelihood from CMS $\phi \rightarrow \tau \tau$ search (HiggsBounds-4.2.0)
- LEP Higgs exclusion likelihood, χ^2_{LEP} , if relevant. (HiggsBounds-4.2.0)

Further constraints:

- 95% CL Higgs exclusion limits ($w/o MSSM \phi \rightarrow \tau \tau limits$) (HiggsBounds-4.2.0)
- Sparticle mass limits from LEP, (fixed $m_{\tilde{q}_{1,2}} = m_{\tilde{g}} = 1.5 \text{ TeV}$ to evade LHC limits)
- Require neutral lightest supersymmetric particle (LSP).

Newly included: CheckMate to check SUSY exclusion limits \Rightarrow "naive" χ^2 calculation (heavily relying on HiggsSignals) The best-fit points:

	full fit			fit without a_{μ}			fit without all LEOs		
Case	χ^2/ u	χ^2_{ν}	p	χ^2/ u	χ^2_{ν}	p	χ^2/ u	χ^2_{ν}	p
SM	83.7/91	0.92	0.69	72.4/90	0.80	0.91	70.2/86	0.82	0.89
h	68.5/84	0.82	0.89	68.2/83	0.82	0.88	67.9/79	0.86	0.81
H	73.7/85	0.87	0.80	71.9/84	0.86	0.82	70.0/80	0.88	0.78

Best-fit points parameters:

Case	$ \begin{array}{c} M_A \\ (\text{GeV}) \end{array} $	an eta	μ (GeV)	A_t (GeV)	$\begin{array}{c} M_{\tilde{q}_3} \\ (\text{GeV}) \end{array}$	$M_{\tilde{\ell}_3}$ (GeV)	$\begin{array}{c} M_{\tilde{\ell}_{1,2}} \\ (\text{GeV}) \end{array}$	$\begin{array}{c} M_2 \\ (\text{GeV}) \end{array}$
$\begin{vmatrix} h \\ H \end{vmatrix}$	929 172	$\begin{array}{c} 21.0\\ 6.6\end{array}$	$7155 \\ 4503$	$4138 \\ -71$	$2957 \\ 564$	$698 \\ 953$	$\begin{array}{c} 436 \\ 262 \end{array}$	$358 \\ 293$

 \Rightarrow SM and both MSSM cases provide similar fit to the Higgs data \Rightarrow Including LEOs, SM fit becomes worse

Best-fit point rates in the two Higgs cases:

Light-Higgs case: preferred rates

 $R_{VV}^{h} = 0.99_{-0.08}^{+0.09}, \quad R_{\gamma\gamma}^{h} = 1.02_{-0.10}^{+0.16}, \quad R_{bb}^{Vh} = 1.00_{-0.05}^{+0.02}, \quad R_{\tau\tau}^{h} = 1.00_{-0.20}^{+0.06}$ $\Rightarrow \text{ all very SM-like (no surprise ...)}$ $\Rightarrow \text{ but some (BSM) spread is allowed!}$

Light-Higgs case: preferred parameters in the \tilde{t} sector

 $\Rightarrow \text{ light stops down to } m_{\tilde{t}_1} \sim 300 \text{ GeV possible} \\ \text{(even lighter stops possible with } M_{\tilde{t}_L} \neq M_{\tilde{t}_R})$

The "exotic" solution:

the discovery is interpreted as the heavy $\mathcal{CP}\text{-}even$ Higgs

In principle also possilbe:

 $M_h < 125 {
m ~GeV}$ $M_H pprox 125 {
m ~GeV}$

Consequences:

- all Higgs bosons very light
- easy(?) discovery of additional Higgs bosons at the LHC

Constraints:

- direct searches for the lightest $\mathcal{CP}\text{-}even$ Higgs
- direct searches for the heavy neutral Higgses
- direct searches for the charged Higgses
- flavor constraints (BR($B_s \rightarrow \mu^+ \mu^-$) etc.)
- \Rightarrow original scenario: low- M_H

[M. Carena, S.H., O. Stål, C. Wagner, G. Weiglein '13]

 \Rightarrow exclusion of light $M_{H^{\pm}}$ in the m_h^{\max} scenario! ... low- M_H ?

Application of charged Higgs limits on low- M_H scenario:

 \Rightarrow that (particular incarnation of the) low- M_H scenario is excluded!

How to avoid BR $(t \rightarrow H^{\pm}b)$ bounds: \Rightarrow higher $M_{H^{\pm}}!$

 \Rightarrow "tricky" region below and beyond the top threshold!

Heavy-Higgs case: preferred parameters

⇒ strongly reduced couplings to gauge bosons ⇒ beyond LEP reach! ⇒ $M_h > M_H/2$ (mostly) to avoid $H \rightarrow hh$ (or BR($H \rightarrow hh$) $\lesssim 10\%$)

 \Rightarrow visible in $gg \rightarrow h \rightarrow \gamma \gamma$?

 \Rightarrow flavor constraints fulfilled!

New low- M_H benchmark scenarios

Based on our best-fit region:

Benchmark scenario	$M_{H^{\pm}}$ [GeV]	$\mu \; [{ m GeV}]$	aneta
low- $M_H^{\mathrm{alt},-}$	155	3800 - 6500	4 - 9
low- $M_H^{\text{alt},+}$	185	4800 - 7000	4 - 9
low- $M_H^{\mathrm{alt,v}}$	140 - 220	6000	4 - 9
fixed parameters:	$m_t = 173.2 \text{ GeV},$	$A_t = A_\tau = A_b = -70 \text{ Ge}$	V, $M_2 = 300 \text{ GeV},$
	$M_{\tilde{q}_L} = M_{\tilde{q}_R} = 1500$	$0 \text{ GeV} (q = c, s, u, d), m_{\tilde{g}}$	= 1500 GeV,
	$M_{\tilde{q}_3} = 750 \text{ GeV},$	$M_{\tilde{\ell}_{1,2}} = 250 \text{ GeV}, M_{\tilde{\ell}_3} =$	$500 \mathrm{GeV}$

low- $M_{H}^{\rm alt-}$: fixed $M_{H^{\pm}} < m_t$

low- $M_H^{\text{alt+}}$: fixed $M_{H^{\pm}} > m_t$

low- M_H^{altv} : varied $M_{H^{\pm}}$ (μ fixed)

low- $M_{H}^{\text{alt-}}$ (155 GeV = $M_{H^{\pm}} < m_t$):

\Rightarrow green area in agreement with all data!

low- $M_{H}^{\text{alt+}}$ (180 GeV = $M_{H^{\pm}} > m_t$):

 \Rightarrow green area in agreement with all data! $M_H \sim M_h \sim 125$ GeV possible!

low- $M_H^{\text{altv}}(140 \text{ GeV} \le M_{H^{\pm}} \le 220 \text{ GeV})$:

\Rightarrow green area in agreement with all data!

low- $M_H^{\text{altv}}(140 \text{ GeV} \le M_{H^{\pm}} \le 220 \text{ GeV})$:

5. Results in the NMSSM

Some NMSSM Higgs theory $(Z_3 \text{ invariant NMSSM})$

MSSM Higgs sector: Two Higgs doublets

$$H_1 = \begin{pmatrix} H_1^1 \\ H_1^2 \end{pmatrix} = \begin{pmatrix} v_1 + (\phi_1 + i\chi_1)/\sqrt{2} \\ \phi_1^- \end{pmatrix}$$
$$H_2 = \begin{pmatrix} H_2^1 \\ H_2^2 \end{pmatrix} = \begin{pmatrix} \phi_2^+ \\ v_2 + (\phi_2 + i\chi_2)/\sqrt{2} \end{pmatrix}$$

$$V = (\tilde{m}_{1}^{2} + |\mu||^{2})H_{1}\bar{H}_{1} + (\tilde{m}_{2}^{2} + |\mu||^{2})H_{2}\bar{H}_{2} - m_{12}^{2}(\epsilon_{ab}H_{1}^{a}H_{2}^{b} + \text{h.c.})$$

+ $\frac{g'^{2} + g^{2}}{8}(H_{1}\bar{H}_{1} - H_{2}\bar{H}_{2})^{2} + \frac{g^{2}}{2}|H_{1}\bar{H}_{2}|^{2}$

Some NMSSM Higgs theory $(Z_3 \text{ invariant NMSSM})$

NMSSM Higgs sector: Two Higgs doublets + one Higgs singlet

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix}$$
$$S = v_{s} + S_{R} + IS_{I}$$

$$V = (\tilde{m}_{1}^{2} + |\not\!\!/ \lambda S|^{2})H_{1}\bar{H}_{1} + (\tilde{m}_{2}^{2} + |\not\!\!/ \lambda S|^{2})H_{2}\bar{H}_{2} - m_{12}^{2}(\epsilon_{ab}H_{1}^{a}H_{2}^{b} + \text{h.c.})$$

+ $\frac{g'^{2} + g^{2}}{8}(H_{1}\bar{H}_{1} - H_{2}\bar{H}_{2})^{2} + \frac{g^{2}}{2}|H_{1}\bar{H}_{2}|^{2}$
+ $|\lambda(\epsilon_{ab}H_{1}^{a}H_{2}^{b}) + \kappa S^{2}|^{2} + m_{S}^{2}|S|^{2} + (\lambda A_{\lambda}(\epsilon_{ab}H_{1}^{a}H_{2}^{b})S + \frac{\kappa}{3}A_{\kappa}S^{3} + \text{h.c.})$

Free parameters:

$$\lambda, \kappa, A_{\kappa}, M_{H^{\pm}}, \tan \beta, \mu_{\text{eff}} = \lambda v_s$$

CP-even : h_1, h_2, h_3 CP-odd : a_1, a_2 charged : H^+, H^- Goldstones : G^0, G^+, G^-

Neutralinos:

 $\mu
ightarrow \mu_{
m eff}$

compared to the MSSM: one singlino more

 $\rightarrow \tilde{\chi}^0_1, \tilde{\chi}^0_2, \tilde{\chi}^0_3, \tilde{\chi}^0_4, \tilde{\chi}^0_5$

Mass of the lightest CP-even Higgs: (no singlet mixing)

$$m_{h,\text{tree},\text{NMSSM}}^2 = m_{h,\text{tree},\text{MSSM}}^2 + M_Z^2 \frac{\lambda^2}{g^2} \sin^2 2\beta$$

Mass of the \mathcal{CP} -odd Higgs:

$$\begin{split} \mathsf{MSSM} &: M_A^2 = -m_{12}^2(\tan\beta + \cot\beta) = \mu B(\tan\beta + \cot\beta) \\ \mathsf{NMSSM} &: "M_A^2" = \mu_{\mathsf{eff}} B_{\mathsf{eff}}(\tan\beta + \cot\beta) \\ & \text{with } B_{\mathsf{eff}} = A_\lambda + \kappa v_s, \ \mu_{\mathsf{eff}} = \lambda v_s \qquad \Rightarrow \text{ one very light } a_1 \end{split}$$

Mass of the charged Higgs:

$$\begin{split} \text{MSSM} &: M_{H^{\pm}}^2 = M_A^2 + M_W^2 = M_A^2 + \frac{1}{2} v^2 g^2 \\ \text{NMSSM} &: M_{H^{\pm}}^2 = M_A^2 + v^2 \left(\frac{g^2}{2} - \lambda^2 \right) \end{split}$$

Mass of the lightest CP-even Higgs: (no singlet mixing)

$$m_{h,\text{tree},\text{NMSSM}}^2 = m_{h,\text{tree},\text{MSSM}}^2 + M_Z^2 \frac{\lambda^2}{g^2} \sin^2 2\beta$$

Mass of the \mathcal{CP} -odd Higgs:

$$\begin{split} \mathsf{MSSM} &: M_A^2 = -m_{12}^2(\tan\beta + \cot\beta) = \mu B(\tan\beta + \cot\beta) \\ \mathsf{NMSSM} &: "M_A^2" = \mu_{\mathsf{eff}} B_{\mathsf{eff}}(\tan\beta + \cot\beta) \\ & \text{with } B_{\mathsf{eff}} = A_\lambda + \kappa v_s, \ \mu_{\mathsf{eff}} = \lambda v_s \qquad \Rightarrow \text{ one very light } a_1 \end{split}$$

Mass of the charged Higgs:

$$\begin{split} \text{MSSM} &: M_{H^{\pm}}^2 = M_A^2 + M_W^2 = M_A^2 + \frac{1}{2} v^2 g^2 \\ \text{NMSSM} &: M_{H^{\pm}}^2 = M_A^2 + v^2 \left(\frac{g^2}{2} - \lambda^2 \right) \end{split}$$

 $\Rightarrow M_{h_1}^{\rm MSSM, tree} \leq M_{h_1}^{\rm NMSSM, tree}, \text{ one light } a_1, \ M_{H^\pm}^{\rm MSSM, tree} \geq M_{H^\pm}^{\rm NMSSM, tree}$

Interesting case: light singlet

Singlet does not couple to SM particles!

Interesting case: light singlet

Singlet does not couple to SM particles!

"Non-interacting particles are hard to detect."

[F. Klinkhamer]

Interesting case: light singlet

Singlet does not couple to SM particles!

"Non-interacting particles are hard to detect."

"Easily" possible in the NMSSM:

Light, singlet-like Higgs below 125 GeV

Can the LHC find them?

[F. Klinkhamer]

Parameters:

$$\begin{split} &\tan\beta=8,\; M_A=1\; {\rm TeV},\; A_\kappa=-2...0\; {\rm TeV},\; \mu=120...2000\; {\rm GeV},\\ &2M_1=M_2=500\; {\rm GeV},\; M_3=1.5\; {\rm TeV},\; m_{\tilde{Q}_3}=1\; {\rm TeV},\; m_{\tilde{Q}_{1,2}}=1.5\; {\rm TeV},\\ &A_t=-2\; {\rm TeV},\; A_{b,\tau}=-1.5\; {\rm TeV} \end{split}$$

\Rightarrow light Higgs below 125 GeV \Rightarrow strongly reduced couplings to gauge bosons!

Parameters:

$$\begin{array}{l} \tan\beta=8,\;M_{A}=1\;\,{\rm TeV},\;A_{\kappa}=-2...0\;\,{\rm TeV},\;\mu=120...2000\;\,{\rm GeV},\\ 2M_{1}=M_{2}=500\;\,{\rm GeV},\;M_{3}=1.5\;\,{\rm TeV},\;m_{\tilde{Q}_{3}}=1\;\,{\rm TeV},\;m_{\tilde{Q}_{1,2}}=1.5\;\,{\rm TeV},\\ A_{t}=-2\;\,{\rm TeV},\;A_{b,\tau}=-1.5\;\,{\rm TeV} \end{array}$$

\Rightarrow light Higgs below 125 GeV has large singlet component \Rightarrow second Higgs is SM-like

(Only?) possible search channel: $h_1 \rightarrow \gamma \gamma$

\Rightarrow no sensitivity yet!

Conclusinos

- SUSY is (still) the best motivated BSM theory
- SUSY Higgs mass predictios are far behind experimental accuracy
- <u>Higgs rate measurements</u> can be fulfilled by
 - the light $\mathcal{CP}\text{-}even$ Higgs in the decoupling regime
 - the light \mathcal{CP} -even Higgs in the alignment w/o decoupling regime
 - the heavy \mathcal{CP} -even Higgs with $M_h < 125 \text{ GeV}$
- MSSM results:
 - CMSSM, NUHM1, NUHM2: relatively high Higgs mass scales favored
 - hMSSM: simple decoupling with large M_A
 - pMSSM8: light CP-even Higgs for "all" M_A
 - heavy \mathcal{CP} -even Higgs
 - \Rightarrow new benchmark scenarios
- NMSSM results:

Interesting possiblity: light singlet-like state below 125 GeV

 \Rightarrow LHC searches via $\gamma\gamma$, no sensitivity (yet)
Further Questions?

Sven Heinemeyer – chargedHiggs 2016, Uppsala, 04.10.2016