# Status and plans for the pigtails

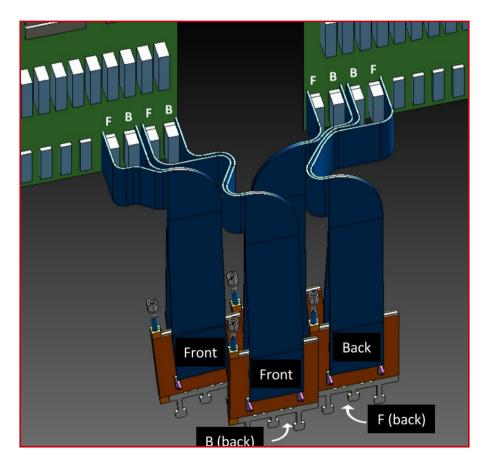
MariaPilar Peco Regales

**INFN Milano LHCb UT Workshop** 

17-19 May 2016








# Topics

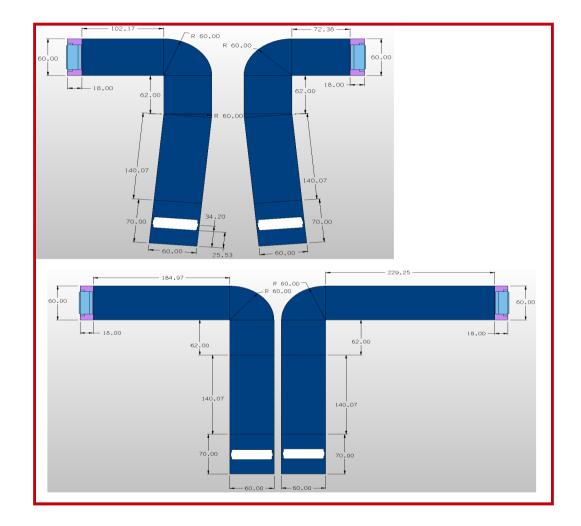
- Brief introduction
- Pigtails limitations
- Study of the possibilities
- Mechanical mock-up
- Last pigtail version
- Future plans

#### **Brief introduction**

- Flex cable from the stave to the backplanes and need to perform several bends.
- Almost 400 pins to route.
- Two connectors: MEGARRAY and SEAF8-RA.



#### INFN Milano LHCb UT Workshop


# **Pigtail limitations**

#### Mechanical:

- → Max. Width: 60mm
- Aprox. Shape and sizes:
- Need to perform some bends:

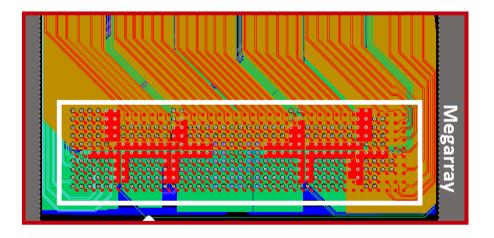
| Degrees | Radius (mm) | Length (mm) |
|---------|-------------|-------------|
| 80      | 10          | 14          |
| 90      | 10          | 15.7        |
| 130     | 10          | 22.64       |

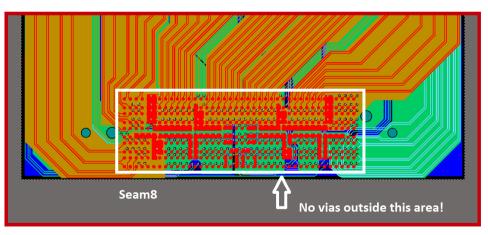
Min. Radius: 15xThickness Max.Thickness: 370um



# **Pigtail limitations**

#### → Connectors:


MEGARRAY 400: Pad Pitch: 1.27mm


As wide as the pigtail cable. No space at sides.

SEAF8-RA: Pad Pitch: 0.8 mm

Small connector. It limits the size of vias and tracks we can use.

#### All these issues affect the fan-out design!





# **Pigtail limitations**

#### • Electrical:

- → Z. diff for pairs: 100 ohms
- → Max. DC resistance for pairs (longest path 55cm): 5 ohms → Should not go under 100um trace width
- DC resistance for PWR planes << 1 ohm</li>

#### First pigtail prototype

6-layer cable. Total thickness: 676um Too high! Must be less than 370um approx. Need to reduce this if we want it to be flex!

|   | Layer Name     | Туре         | Material    | Thickness<br>(mm) | Dielectric<br>Material | Dielectric<br>Constant | Pullback<br>(mm) | Orientation |
|---|----------------|--------------|-------------|-------------------|------------------------|------------------------|------------------|-------------|
|   | Top Overlay    | Overlay      |             |                   |                        |                        |                  |             |
|   | Top Solder     | Solder Mask/ | Surface Mat | 0.01              | Solder Resist          | 3.5                    |                  |             |
|   | Top Layer      | Signal       | Copper      | 0.017             |                        |                        |                  | Тор         |
|   | Dielectric 1   | Dielectric   | Core        | 0.1               | kapton                 | 3.4                    |                  |             |
|   | Digital1       | Signal       | Copper      | 0.035             |                        |                        |                  | Not Allowed |
|   | Dielectric 2   | Dielectric   | Prepreg     | 0.1               | kapton                 | 3.4                    |                  |             |
|   | Signal Layer 2 | Signal       | Copper      | 0.017             |                        |                        |                  | Not Allowed |
|   | Dielectric 3   | Dielectric   | Core        | 0.1               | kapton                 | 3.4                    |                  |             |
|   | Digital2       | Signal       | Copper      | 0.035             |                        |                        |                  | Not Allowed |
|   | Dielectric 4   | Dielectric   | Prepreg     | 0.1               | kapton                 | 3.4                    |                  |             |
|   | Signal Layer 3 | Signal       | Copper      | 0.017             |                        |                        |                  | Not Allowed |
|   | Dielectric 5   | Dielectric   | Core        | 0.1               | kapton                 | 3.4                    |                  |             |
|   | Bottom Layer   | Signal       | Copper      | 0.035             |                        |                        |                  | Bottom      |
| V | Bottom Solder  | Solder Mask/ | Surface Mat | 0.01              | Solder Resist          | 3.5                    |                  |             |
|   | Bottom Over    | Overlay      |             |                   |                        |                        |                  | 82          |

#### Some proposals

- 1) Try to design a 4 layer cable.
- Reduce the substrate from 100um to 50um→ This implies going from a standard to a high-density routing (traces width << 100um).</li>
- If we condense all pairs in two layers (standard or high density):

There's space at the cable itself, but difficult to route the fan-out.

Each connector has a different limitation, so it's complicated to reconcile both fan-outs.

#### **Problems**

- High DC resistance at diff. pairs as traces get thinner. More than 5 ohms!
- Power planes width would be reduced to half & can't be routed in just one layer.

- For stripline traces in diff. pairs (high density) we need a HUGE <sup>17-19 May 2016</sup> INFN Milano LHCb UT Workshop<sup>8</sup>

- Not viable

#### 2) Split the cable in 3 ribbons

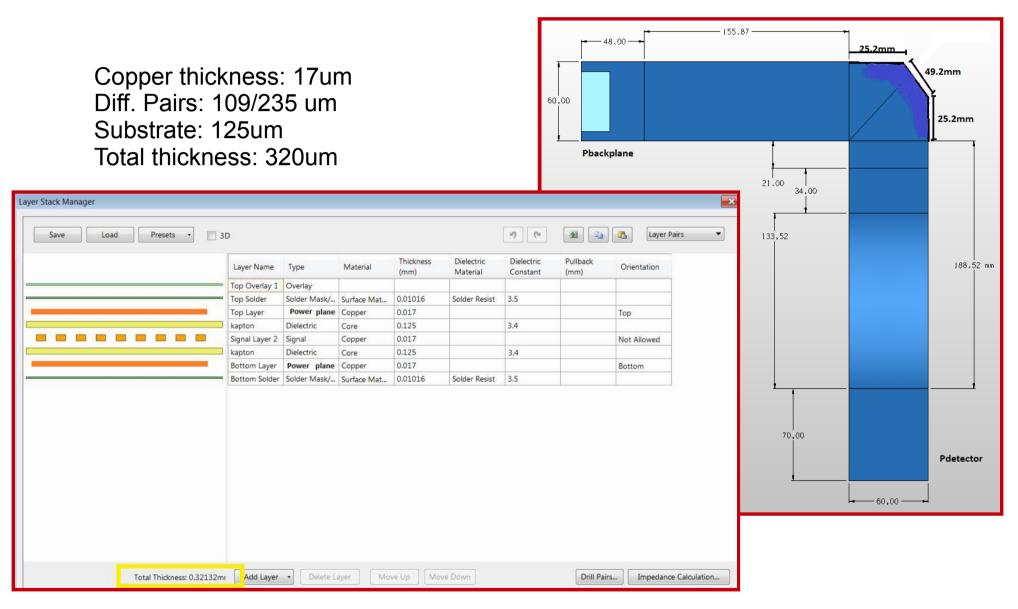
- We divide the total thickness, so the ribbons are more flexible.
- We can use wider pair traces if we increase a little bit the substrate (125um) → decreases DC resistance.
- Power lanes can remain as in the 3 layer cable design, which have a good DC resistance values.
- Much more freedom in the design.

• Possible configurations:

| 3 STRIPLINE RIBBONS |
|---------------------|
|                     |
| DIGITAL PWR PLANES  |
| KAPTON 125/100      |
| SIGNAL 1            |
| KAPTON              |
| DIGITAL PWR PLANES  |
|                     |
| DIGITAL PWR PLANES  |
| KAPTON 125/100      |
| SIGNAL2             |
| KAPTON              |
| DIGITAL PWR PLANES  |
|                     |
| DIGITAL PWR PLANES  |
| KAPTON 125/100      |
| SIGNAL 3            |
| KAPTON              |
| ANALOGUE PWR PLANES |

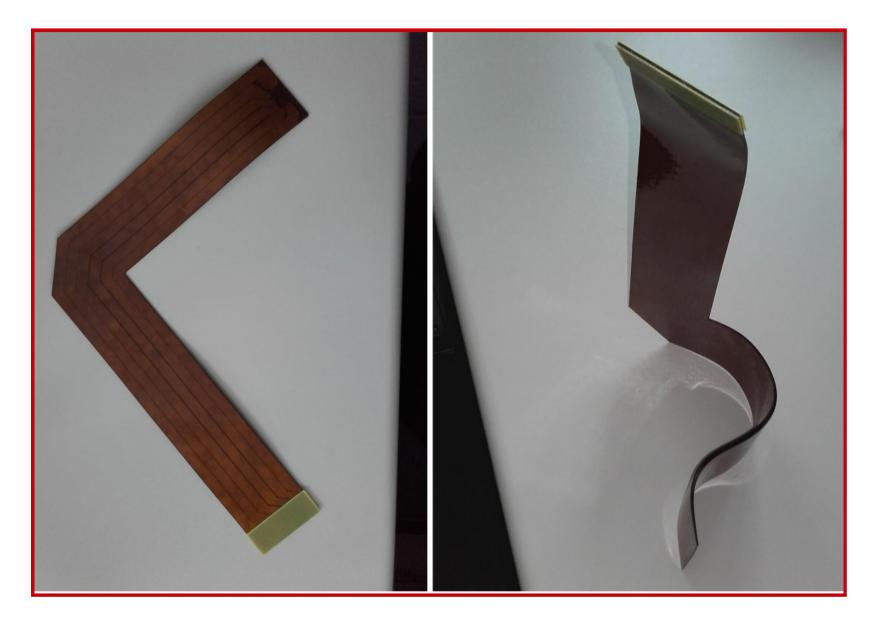
## Best option in terms of SI and PI!

| 2 MICROSTRIP+1 STRIPLINE RIBBONS |
|----------------------------------|
|                                  |
| TOP SIGNAL 1                     |
| KAPTON (100 or 125?)             |
| DIGITAL PWR PLANES               |
|                                  |
| TOP SIGNAL2                      |
| KAPTON (100 or 125?)             |
| DIGITAL PWR PLANES               |
|                                  |
| DIGITAL PWR PLANES               |
| KAPTON 125/100                   |
| SIGNAL 3                         |
| КАРТОН                           |
| ANALOGUE PWR PLANES              |
|                                  |

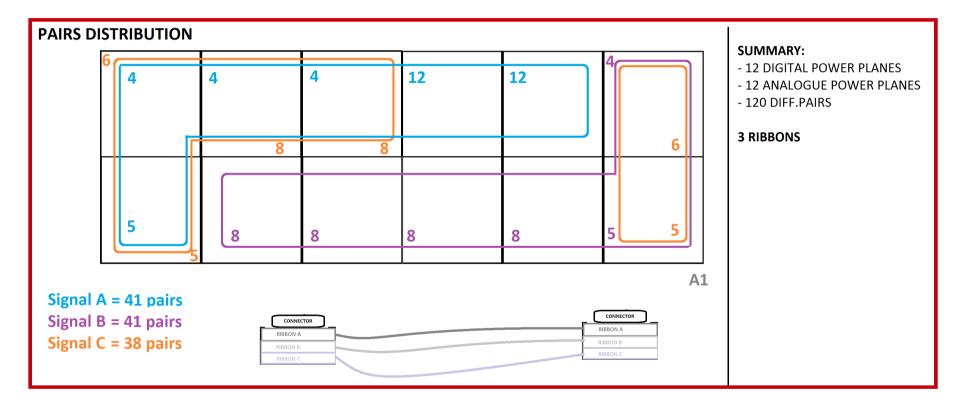

Comparison

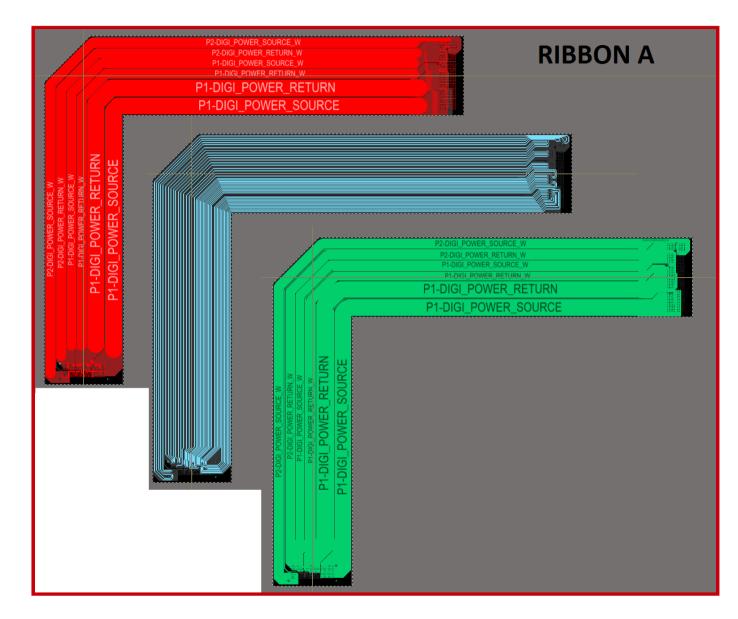
| DESIGN                                  | Mechanics      | DC resistance      | Routing     |
|-----------------------------------------|----------------|--------------------|-------------|
|                                         |                |                    |             |
| 6 layer cable                           |                |                    |             |
| 4 layer high density                    |                |                    |             |
| 4 layer standard                        |                |                    |             |
| Splitted in 3ribbons                    |                |                    |             |
|                                         |                | •                  |             |
| a 4 layer cable I need 2 layers for DIG | powering. Do w | e really need anal | ogue poweri |
|                                         | powering. Do w | e really need anal | ogue poweri |

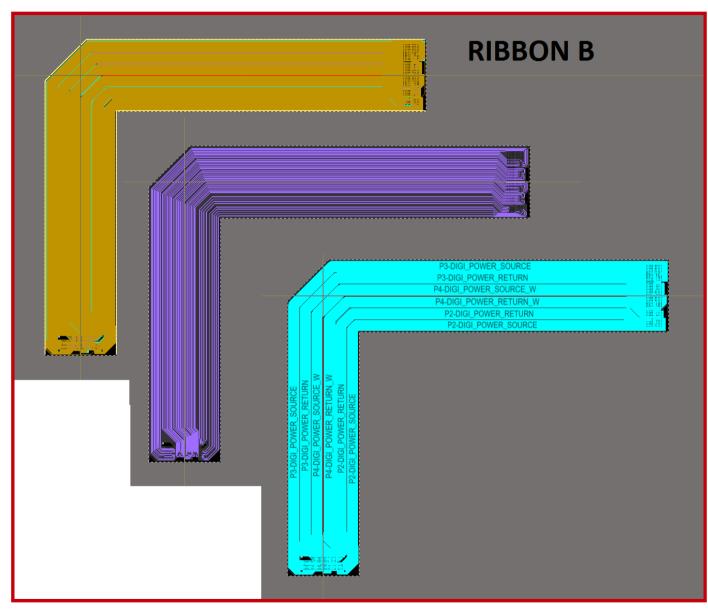
### **Mechanical Mock-up**

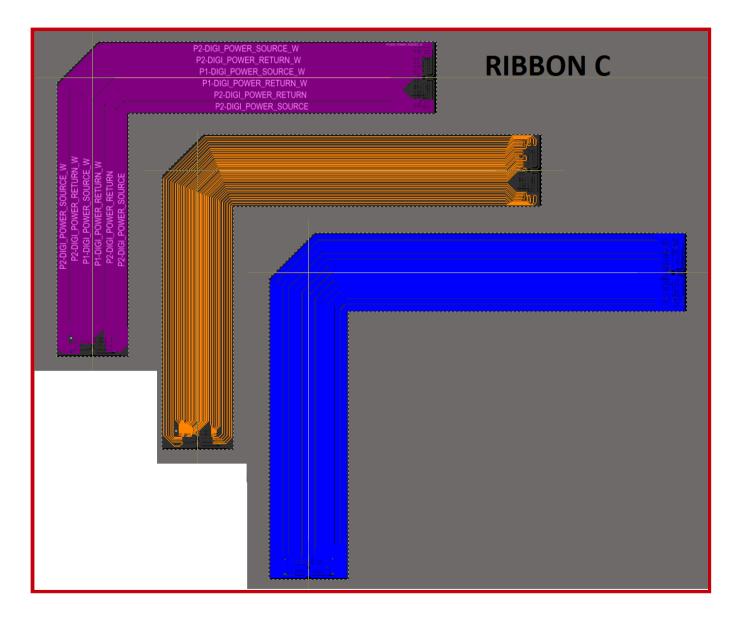

- As we had a lot of doubts about the flexibility of the ribbons, we decided to produce a mechanical mock-up at CERN.
- 1 ribbon was designed. Next, we produced 3 of them.
- The ribbons are glued at one end and free at the other one, so we can study the movement.

#### **Mechanical Mock-up**





#### **INFN Milano LHCb UT Workshop**


#### **Mechanical Mock-up**



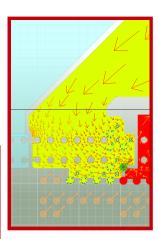

- Routing is finished.
- Distribution:







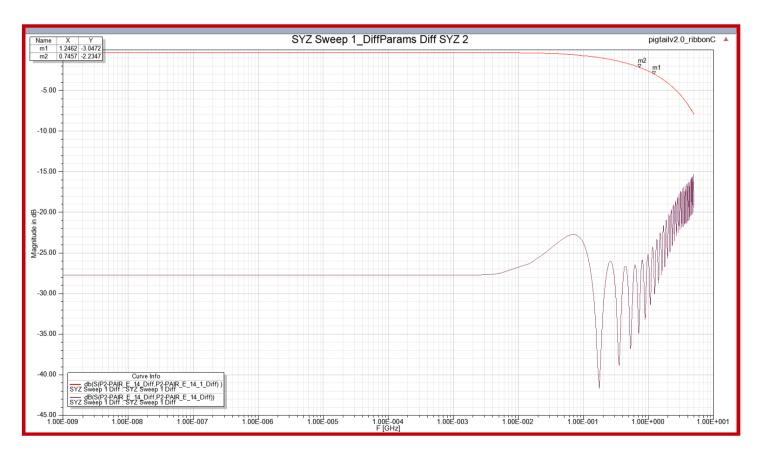



DIDDONIC

#### Some simulations and results

| <b>RIBBON A</b>           |          |
|---------------------------|----------|
|                           | Ω (ohms) |
| DC RESISTANCE (roundtrip) |          |
| P1 DIGI PWR               | 39.8m    |
| P1 DIGI PWR_W             | 74.6m    |
| P2 DIGI PWR_W             | 78.68m   |
| Z.DIFF PAIRS              |          |
| W=109um                   | 103.9    |
| Sep= 235um                |          |

| RIBBON B      |        |
|---------------|--------|
|               |        |
| DC RESISTANCE |        |
| P2 DIGI PWR   | 57.28m |
| P3 DIGI PWR   | 61m    |
| P4 DIGI PWR_W | 58.28m |
| Z.DIFF PAIRS  |        |
| W=109um       | 103.9  |
| Sep= 235um    |        |


| RIBBON C        |         |
|-----------------|---------|
|                 |         |
| DC RESISTANCE   |         |
| P1 DIGI PWR_W   | 106.48m |
| P2 DIGI PWR     | 104.8m  |
| P2 DIGI PWR_W   | 118.25m |
|                 |         |
| P1 ANALOG PWR   | 245.88m |
| P1 ANALOG PWR_W | 235.9m  |
| P2 ANALOG PWR   | 299.4m  |
| P2 ANALOG PWR_W | 336.33m |
| P3 ANALOG PWR   | 316.22m |
| P4 ANALOG PWR_W | 276.88m |
|                 |         |
|                 |         |
|                 |         |
| Z.DIFF PAIRS    |         |
| W=109um         | 103.9   |
| Sep= 235um      |         |



17-19 May 2016

- DC resistance for pairs: 5 ohms.
- Computed for the longest path 55cm, assuming rectangular section 17x109um (nominal values).

- Simulated S parameters for one pair.
- $-3dB \rightarrow 1.24GHz$
- $-1.2dB \rightarrow 300MHz$
- Parameter S11 shows that most of the attenuation is not due to reflection.



#### INFN Milano LHCb UT Workshop

#### Future plans

- The routing is finished and the simulations give us reasonable results.
- Awaiting mechanical approval for submission.
- Cross-check between simulations and measures would be desirable.