

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

SALT Design I (Silicon ASIC for LHCb Tracking)

Marek Idzik on behalf of AGH-UST

Faculty of Physics and Applied Computer Science AGH University of Science and Technology

INFN Milano LHCb UT workshop Milano 17-19 May 2016

- Introduction
- SALT architecture and design
- Analog and Mixed-Mode
- Other...
- Simulations, Status and Plans

The Goal – SALT readout ASIC for UT detector

SALT story in short:

AGH-UST Design team: - staff: M. Firlej, T. Fiutowski, M. Idzik, J. Moroń, K. Świentek - PhD students: Sz. Bugiel, R. Dasgupta, M. Kopeć, M. Kuczyńska

- Two submissions (5 ASICs) of key functional blocks (Preamplifier&Shaper, Single-to-Diff converter, 6-bit ADC, SLVS, PLL, DLL) done in IBM CMOS 130 nm
 designed&fabricated and mostly tested
- In 2014 collaboration decided to move to TSMC CMOS 130 nm
- In February 2015 a large submission 8 chips, including SALT8 and various blocks, were submitted in TSMC 130 nm – partially tested, problems with ESD/pads (mainly FE and ADC chips)
- In November 2015 SALT8 version 2, 8-channel FE&ADC chips plus other blocks (e.g. bandgaps) submitted, just fabricated, SALT8 tested by JC
- June 2016 we will submit complete 128-channel SALT chip (why not May ?)

- TSMC CMOS 130 nm technology
- 128 channels, Front-end&ADC in each channel
- Input Pitch 80 um (plus ground pads on the sides!!!), Output pitch =140um
- Sensor: capacitance 5–20 pF, AC coupled
- Both input signal polarities (p-in-n and n-in-p sensors)
- Input charge range ~ 30ke⁻
- Noise: ENC ~ 1000e⁻ @10pF + 50e⁻/pF
- Pulse shape: $T_{peak} \sim 25$ ns, very short tail: $\sim 5\%$ after $2*T_{peak}$
- Crosstalk < 5%
- ADC: 6-bit resolution (5-bit/polarity), 40MS/s
- DSP functions: pedestal and common mode subtraction, zero-suppression
- Serialization&Data transmission: 320 Mbps e-links to GBT, SLVS I/O
- Slow control: I2C
- Power < 6 mW/channel
- Radiation hardness \sim 30 MRad

SALT ver 3 chip documentation

Miroslaw Firlej, Tomasz Fiutowski, Marek Idzik, Jakub Moron, Krzysztof Swientek Szymon Bugiel, Roma Dasgupta, Marika Kuczynska

> Created: January 2016 Last change: May 13, 2016

Contents

1. ASIC overview	4
2. Analogue front-end	5
3. Analog to Digital Converter	6
4. Generation of common mode voltages 4.1. Bandgap reference and temperature sensor	7 8
5. Clock generation 5.1. Delay Locked-Loop (DLL) 5.1.1. DLL configuration procedure 5.2. Phase Locked-Loop (PLL) 5.2.1. PLL configuration procedure	8 9 10 11
6. Digital Signal Processing 6.1. Pedestal subtraction 6.2. Mean Common Mode Subtraction 6.3. Zero Suppression 6.4. NZS data	11 12 13 15 16
 7. Back-end data processing 7.1. Packet building and recording	16 17 17
8. TFC debug block	20

9. Chip description	20
10.I/O interfaces 10.1. Slow I ² C interface 10.2. Fast data interface with DDR serializer 10.3. Fast TFC interface with DDR deserializer	23 23 27 28
11.Padring	30
12. Open issues, questions, proposals 12.1. DSP and back-end data processing modification	37 37 37
A. ASIC registers A.1. Analogue and mixed-mode registers A.2. DSP registers A.3. Memory registers and counters A.4. Serializer registers A.5. Other configuration registers A.6. TFC counters	 39 47 61 63 65 70
B. Changes in comparison to previous version	75

SALT documentation is not yet completed, work in progress...

Most of key blocks of SALT were included in 8-channel prototypes called SALT8 version1&2. In SALT8 version2 important parts (e.g. ELT transistors for small currents, new Single to Diff) have been improved or corrected. But since SALT is a very complex chip several features will appear only in next submission...

Is it possible, with realistic shaper complexity and power consumption, to shorten the pulse tail to decrease to 5% of pulse amplitude after $2*T_{peak}$?

Introducing complex poles and zeros in transfer function one can shorten the pulse tail to the required goal

7

- 3-stage shaper gives the requested pulse with short tail
- Common mode (vcm) is kept at half power supply to work with both pulse polarities

Same as in SALT8 version 2

- Pseudo-differential solution based on single- ended amplifiers chosen
- Additional gain by 2 may be obtained in S2Diff

Same as in SALT8 version 2

Main features:

- SAR architecture, 6-bit resolution
- 40 MSps nominal sampling rate
- Split DAC with MCS switching scheme
- Asynchronous logic

Same as in SALT8 version 2

SALT design Common mode voltages generation and AGH bandgap reference

Newly designed for SALT

Reference signals:

- Bandgap reference of 0.6V. The circuit includes also temperature sensor
- VCMA 0.6V for first two shaper stages
- VCMB 0.6V for third shaper stage
- VCMC 0.6V for single-todifferential
- VCMD 0.6V common mode voltage for ADC

SALT design Biasing, Calibration Monitoring,

Other Analog&Mixed-mode components:

- Two test channels (one on each side), various signals are buffered and go to pads
- Calibration circuit (set separately for each channel)
- 7 DACs setting various biases: preamp, Krummenacher, shaper, S-2-Diff, Calibration, SLVS-Ibias, SLVS-Vref. Could be readout via test-pads
- Six Monitoring 6-bit ADCs: Vctl-PLL, Vctl-DLL, 7 DACs multiplexed to 2 ADCs, PTAT-temperature, Vref-bandgap

Mostly newly designed for SALT or modified

DLL features:

•Operating frequency: 40MHz

- •64 clock phases
- •Two slectable output phases
- •VCDL Current Test Logic
- •Power < 2mW @ 40MHz
- •Jitter < 15 ps @ 40MHz

PFD change to PD to improve radiation hardness Monitoring and calibration improved

PLL features:

•Output frequency 160MHz

- •Divider by: 4
- •Reference frequency 40MHz
- •16 phases available
- •Two slectable output phases
- •Power < 2mW @ 160MHz
- •Jitter < 10ps @ 160MHz

Practically, the same as in SALT8 version 2 (not used functionality removed)

Many changes \rightarrow Krzysztof

SALT integration Floorplan and layout

Completly new \rightarrow Tomek

SALT – simulations, status and plans

AGH

- Layout of 128 channels
 - Analog&Mixed-mode just completed \rightarrow Tomek
 - Digital in progress \rightarrow Krzysztof
- Top level simulations by now done either on schematic or only part of extracted view (lack of computing power/memory)
- When taking into account realistic supply network various parameters
- crosstalk, disturbances, PSRR deteriorate, how much ?

 \rightarrow we need 128-channel simulation on extracted view

Cdet=3pF, Cint=2x5pF

17

SALT – simulations, status and plans

- \bullet Last week we managed to prepare a workstation with ${\sim}300\text{GB}$ of RAM
- We have managed to extract the netlist of 128 channels of Analog&Mixed-mode part
- First simulations just started (~week for simple run)
- Few words about power...

•

Submission planned for mid-June