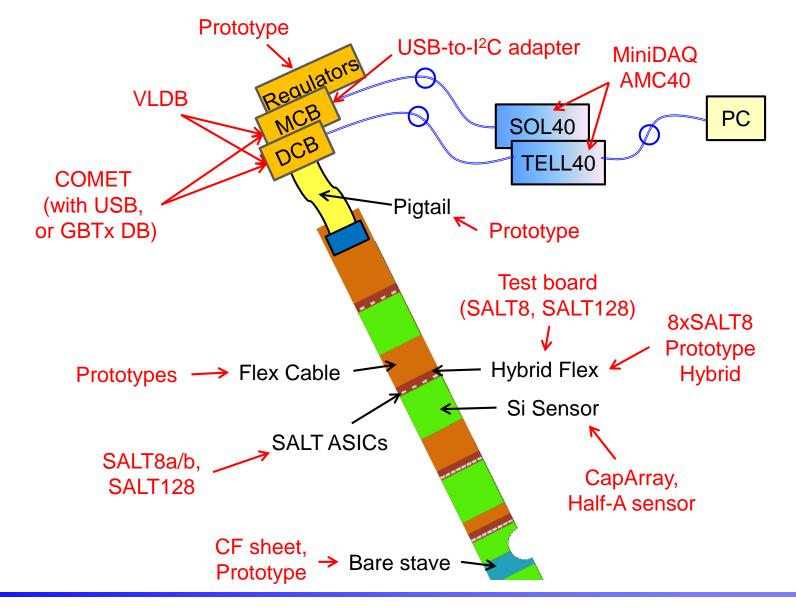
The UT Electronics Slice Test Plan & Preparation At Syracuse

Jianchun Wang

INFN Milano LHCb UT Workshop May 17-19, 2016



- The UT electronics slice test system is crucial in validating the whole readout scheme, testing and optimizing design of major components.
- We want to test functionalities of individual components and measure their performance when signal and LV/HV powers are routed according to the baseline design of the UT readout system.
- Individual studies include:
 - Check the data integrity in the system, measure signal to noise ratio with baseline configuration.
 - Study power connection, grounding & shielding schemes, measure signal coupling, noise pickup with different configurations.
 - Check digital signal quality in the flex cables, pigtails, & optical fibers by measuring eye diagram and bit error rate.
 - Test ECS protocol and determine: whether the single-ended I²C works with the expected voltage drop; whether it introduces large noise to the signal; & whether an alternative protocol is needed.

LHCb Major Components of The Readout System

Prototypes & Substitutes

Final		Substitutes & Prototypes			
Sensor		CapArray	Half-A		
SALT		SALT8a	SALT8b	SALT128	
Hyt	orid	SALT8	SALT128 Testboard	Hybrid_8x8	
Stiff	ener	Testboard			
Wirebonds		4-ASIC Ada	8-ASIC Ada		
Flex cable		Prototype_1	Prototype_2	Prototype_3	
Pig	ıtail	MegArray2ERF8	MegAda	Prototype	
Back	plane			Prototype	
мсв	ECS		I2C Adapter		
	TFC	VLDB	COMET with USB interface	COMET +	
D	СВ			GBTx DB	
Opt.	Fiber	Sample			
TEL	.L40	MiniDAQ1		MiniDAQ2	
SOL40		/ AMC40		/ PCIe40	
Bare	Stave	CF sheet	Prototype		
LV Regulator		Prototype			

Use components as close to the final design as possible for realistic tests.

Green color components are available, yellow components are to be produced.

Components of Phase I Slice Test

Final		Substitutes & Prototypes			
Sensor		CapArray	Half-A		
SALT		SALT8a	SALT8b	SALT128	
Hybrid		SALT8	SALT128	Hybrid_8x8	
Stiffener		Testboard	Testboard		
Wirebonds		4-ASIC Ada	8-ASIC Ada		
Flex cable		Prototype_1	Prototype_2	Prototype_3	
Pigtail		MegArray2ERF8	MegAda 룾	Prototype	
Backplane				Prototype	
МСВ	ECS		I2C Adapter		
	TFC	VLDB	COMET	COMET + GBTx DB	
D	СВ				
Opt. Fiber		Sample	with USB		
TELL40		MiniDAQ1	interface	MiniDAQ2	
SOL40					
Bare Stave		CF sheet	Prototype		
LV Regulator		Prototype			

MegAda board is now available. We will start phase I slice test right after this workshop.

- □ In phase I slice test we want to
 - Validate signal integrity with a few differential lines.
 - \circ Investigate effects of I²C cross talk.
 - Investigate effects of digital analog cross talk.
 - Study general noise immunity.
- Now we have all major components. Phase I test will start right after this workshop.
- If components for phase II are available, some phase I tests may be done directly on the phase II setup.

Components of Phase II Slice Test

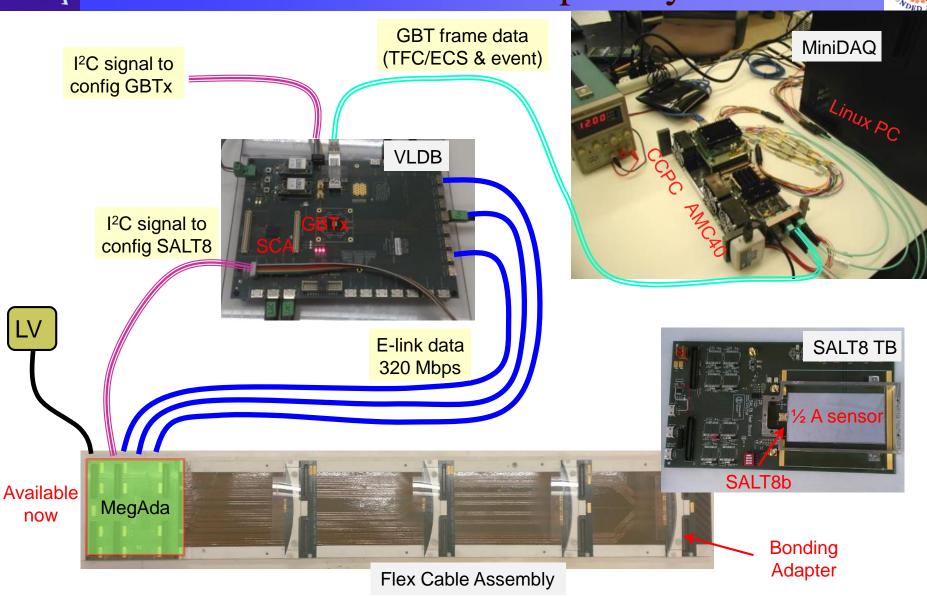
Final		Substitutes & Prototypes			
Sensor		CapArray	Half-A		
SALT		SALT8a	SALT8b	SALT128	
Hybrid		SALT8	d SALT128 Testboard	Hybrid_8x8	
Stiffener		Testboard		Prototype	
Wirebonds		4-ASIC-Ada	8-ASIC Ada		
Flex cable		Prototype_1	Prototype_2	Prototype_3	
Pigtail		MegArray2ERF8	MegAda	Prototype	
Backplane				Prototype	
мсв	ECS		I2C Adapter		
	TFC	VLDB	COMET	COMET +	
D	СВ			GBTx DB	
Opt. Fiber		Sample	with USB		
TELL40		MiniDAQ1	interface	MiniDAQ2	
SOL40					
Bare Stave		CF sheet	Prototype		
LV Regulator		Prototype			

A prototype hybrid of 8 SALT8b ASICs to replace the SALT8 testboard.

A COMET board that has GBTx DB + a USB- I^2C adapter to replace VLDB.

We may use prototype bare stave instead of a CF sheet.

- □ In phase II test we want to
 - Reproduce tests in phase I with a more realistic setup.
 - Validate the COMET board, especially since it has a fresh implementation of GBTx, & VTRx communication.
 - Test HV distribution system.
 - Generate a realistic voltage drop between the COMET & the FE hybrid to determine if the I²C communication works.
 - Study signal interference between ASICs.
- Majority of phase I & II tests need to be done before the electronics review on July 1st. There is ~ 1 month left for component production, system setup & test.



 We will update the slice test plan after phase II basing on how prototype components progress.

- With SALT128 we want to study noise performance, power consumption, channel coupling, ...
- Prototype pigtail cable & back plane will be added to the system for signal quality & noise performance measurements etc.
- Use more than one hybrid to measure inter-hybrid interference, and maybe also between 2 sides of stave.

*

Phase I Slice Test Setup @ Syracuse

LHCb

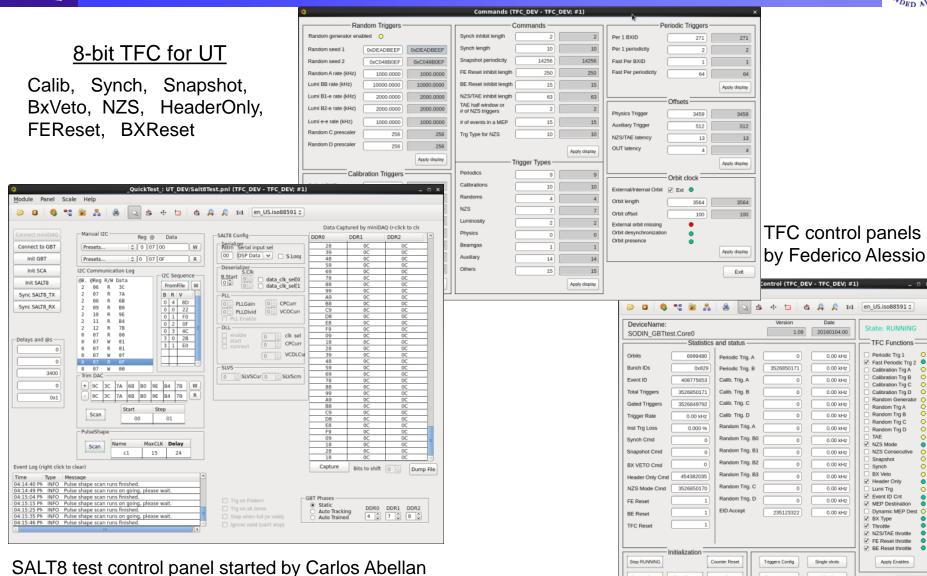
- Status of major components to be added in the phase II slice test and tests later are presented at this workshop
 - COMET with GBTx daughter card (by Will Parker).
 - Hybrid of 8 SALT8 & new flex cable (by Mauro Citterio)
 - SALT128 (by Marek Idzik, Krzysztof Swientek, Tomasz Fiutowski)
 - SALT128 test board
 - Pigtail cable
 - Prototype bare stave

(by Carlos Abellan Beteta)

- (by Maria Del Pilar Peco Regales)
- (by Ray Mountain)

- Other components:
 - MegAda: It is available now. I will bring 1 or 2 back to Syracuse.
 - MiniDAQ2: One system is purchased for UMD, available this summer.
 - LV regulator: We have one prototype from Brian Hamilton.

The DAQ System



- The Linux PC
 - > PVSS control panels sends out configuration data to CCPC via an 1 Gbps Ethernet cable.
 - A process running on PC reads event data in MEP from AMC40 via a 10 Gbps optical line, saves data in files for further analysis, or has real time analysis to avoid huge data files.
 - > Quartus loads firmware to AMC40 FPGA via a USB-to-jtag connection.
 - > Configures GBTx on VLDB via USB-to-I²C adapter.
- CCPC on the MiniDAQ system
 - > Access register of FPGA on AMC40, write or read back register values of configuration.
- AMC40 on the MiniDAQ system
 - A special firmware is implemented to combine TFC/ECS & event data in 1 pair of optical fibers, to & from VLDB separately.
 - > The GBT frame to VLDB consists of GBTx config (IC), SALT8 config (EC), & TFC.
 - > The GBT frame from VLDB contains data from all input e-ports on VLDB & IC/EC read back.
 - > AMC40 generates MEP from VLDB GBT frame data and sends to PC via a 10 Gbps optical.
- On VLDB
 - > GBTx is configured from the USB-to- I^2C adapter, or from IC data.
 - > GBT-SCA communicates to GBTx of EC data & relay in I²C protocol with SALT8.
 - > E-ports operate at 320 Mbps, send TFC/CLK to SALT8, & receive event packets.

PVSS Control Panels

Exit

SOL40

Triggers Monit

System Reset

Regs Reset

Logic Reset

- Besides of validating the readout chain, we also want to measure the system performance in analog domain and digital domain.
- Static measurements of LV voltage drop & power consumption.
- Noise of individual channels & common mode for high frequency effects.
 Some effects may also show up in the coupling of adjacent channels.
- We can measure bit error rate (BER) of the digital signal to check the quality of overall communication.
- We can also measure eye diagrams in individual components.

Requirements of BER Measurement Method

- The bit error rate (BER) measurement program runs on the Linux PC. It has following requirements:
- The program analyzes the MEP data at real time to avoid saving huge files, as the data rate per ASIC is ~ 0.12 GByte/s. We need to run in hours to measure the very small BER value.
- The analysis algorithm has to be simple & fast, since events come in at 40 MHz rate. For a 3.2 GHz CPU, there is only 80 cycles per event.
- It needs an accurate determination on whether or not the data received at the end of readout chain is exactly what was sent out from the head.

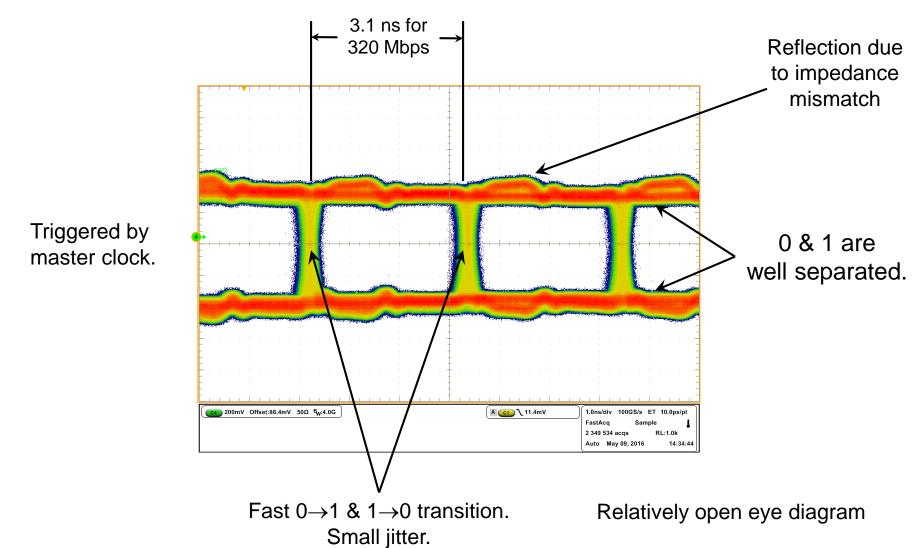
 In a first attempt we configure SALT8b to send out Synch package for every clock cycle, and check only Bxid[3:0].

Eport 0 (8-bit)		Eport 1 (8-bit)		Eport 2 (8-bit)	
12-bit BXID			Synch pattern		
Bxid[11:8]	Bxid[7:4]	Bxid[3:0]	Patt[11:8]	Patt[7:4]	Patt[3:0]

- The BER is expected to be very small. So from previous events we determine what Bxid[3:0] should be in the current event.
- Bxid[3:0] signal may be affected by Bxid[11:8], Patt[11], Patt[8], & Patt[7:4].
- Bxid[11:8] can have all different values, independent of Bxid[3:0] value. We can set Patt[11], Patt[8], & Patt[7:4] to different values in different runs.
- Thus we can measure the true BER, check bits at a rate of 5.76×10^{11} bits per hour.
- In a slice system without flex cable, with timing optimized, we measured the BER of the system to be 0.

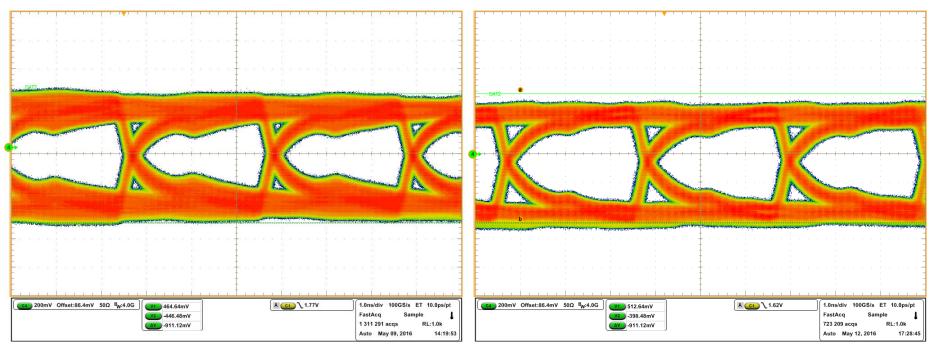
SALT8b Testboard modified for eye diagram test

Tektronix DSA 70404C


A ERM8 connector with a modified micro-coax soldering tip

05/18/2016

Eye Diagram @ SALT8b TB (I)



Plots taken by Nathan Jurik

Rev2 flex cable

Rev1 flex cable

Rev2 seems worse than rev1, maybe due to the impedance issue in the new Flex cable.

- We have staged slice test plans to validate the read out chain and optimize individual components.
- The system setup depends strongly on the available components.
- We plan to study the noise performance, bit error rate, eye diagrams to provide quantitative & qualitative measurements of the readout system.
- Phase I test that was aiming for this workshop is behind plan. We hope phase I & phase II tests can be ready for the electronics review on July 1st at Syracuse.