

Jason Andrews, Brian Hamilton, Hassan Jawahery, Tom O'Bannon, **Will Parker**, and Jack Wimberly

May 18th, 2016

Slide 1/15

Flex power lines



- 1.44 Amps on digital source line P1 West (longest run)
- 110 m Ω on source, 86 m Ω on return (117 m Ω spec)
- No working voltage sense pairs in longest two runs
- 12 working signal pairs in longest run (out of 48)
- Includes one e-link, but not TFC

Flex Cable: Gen 1 vs Gen 2

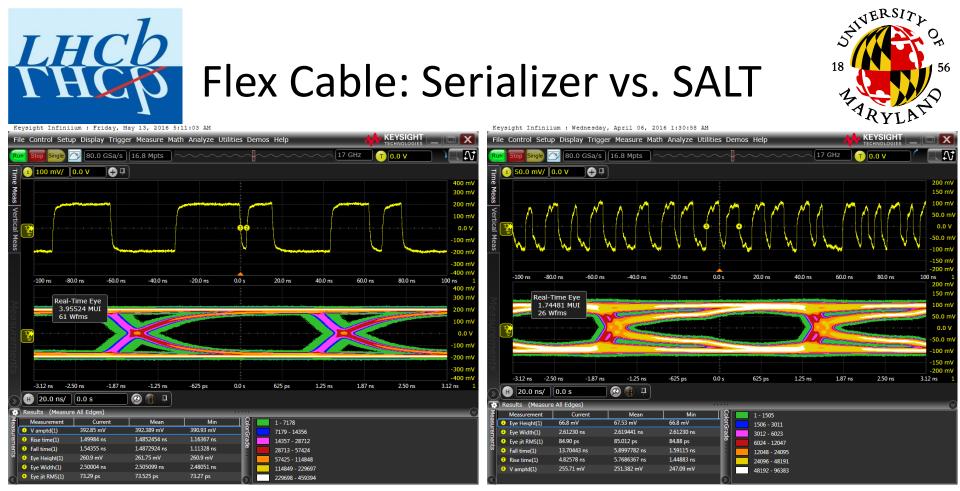
Serializer, Gen 1 Flex

Serializer, Gen 2 Flex

- Eye diagrams over longest flex run using serializer board to generate signal, passive probe board to receive and terminate
- 400mV, 320 Mb/s, fixed pattern
- Consistent performance between generations, 2nd very slightly better

Crosstalk: Gen 1 vs Gen 2

Keysight Infiniium : Friday, May 13, 2016 5:27:47 AM	Keysight Infiniium : Friday, May 13, 2016 11:11:34 PM	
		KEYSIGHT
File Control Setup Display Trigger Measure Math Analyze Utilities Demos Help	File Control Setup Display Trigger Measure Math Analyze Utilities Demos Help	
Run Step Single 🔂 80.0 GSa/S 16.8 Mpts	Run Stop Single 🥂 80.0 GSa/s 16.8 Mpts 17 GHz	🗌 🕇 0.0 V
Waveform Window 1	Waveform Window 1	
፰ <mark>1 10.0 mV/ 0.0 V </mark>	∃ <mark>10.0 mV/ 0.0 V + </mark>	
40.0 mV	ne Meas	40.0 m\
		0.0 V
-40.0 mV		-40.0 m\
-100 ns -80.0 ns -60.0 ns -40.0 ns -20.0 ns 0.0 s 20.0 ns 40.0 ns 60.0 ns 80.0 ns 100 ns 1	-100 hs -80.0 hs -00.0 hs -40.0 hs -20.0 hs 0.0 s 20.0 hs 40.0 hs 00	0.0 ns 80.0 ns 100 ns 1
) H 20.0 ns/ 0.0 s 2 (1) 4	(𝔅) (𝔅) (𝔅) (𝔅) (𝔅) (𝔅) (𝔅) (𝔅)	
₩	FFT	X
ב ב (100 μVrm 0.0 Vrms + 1	글 😢 100 μVrm 0.0 Vrms 🕂 🕂	
1400 µVrm	ne +	400 µVrr
	Meas	
s and a start of the second start of the secon		0.0 Vm
	- Meas	
-400 μVrm		-400 μVri
0 Hz 64.0 MHz 128 MHz 192 MHz 256 MHz 320 MHz 384 MHz 448 MHz 512 MHz 576 MHz 640 MHz f1	0 Hz 64.0 MHz 128 MHz 192 MHz 256 MHz 320 MHz 384 MHz 448 MHz 512	
» Start 0.0 Hz Stop 640 MHz CF 320 MHz Span 640 MHz RBW 7.15 kHz Preset Mark Peaks 👘 📮	Start 0.0 Hz Stop 640 MHz CF 320 MHz Span 640 MHz RBW 7.15 kHz Preset Mark Peaks	🕕 中) 👘 👘
Results (Measure All Edges)	Results (Measure All Edges)	(
Measurement Current Mean Min Max Range (Max-Min) Std Dev Count		td Dev Count
9 V amptd(1) 8.03 mV 7.91 mV 7.71 mV 8.03 mV 320 μV 180 μV 5]	• V amptd(1) 8.03 mV 8.091 mV 7.39 mV 9.00 mV 1.61 mV 287 μV • V amptd(1) 8.03 mV 8.091 mV 7.39 mV 9.00 mV 1.61 mV 287 μV	
Rise time(1) 13.93 ps 38.2348 ps 5.18 ps 749.87 ps 744.68 ps 41.1926 ps 3696619	O Rise time(1) 14.19 ps 39.7508 ps 4.83 ps 1.20938 ns 1.20455 ns 42.963 O Fall time(1) 10.99 ps 39.6826 ps 4.81 ps 949.02 ps 944.22 ps 42.912	
Fall time(1) 12.63 ps 38.1446 ps 5.55 ps 726.95 ps 721.40 ps 41.1053 ps 3696617	P Fall time(1) 10.99 ps 39.6826 ps 4.81 ps 949.02 ps 944.22 ps 42.912	7 ps 190277200


Serializer, Gen 1 Flex

- Very preliminary crosstalk test
- Single signal source (previous slide)
- Measure crosstalk in adjacent channel, terminated at both ends
- Improved in gen 2, minimal in either case
- Further tests needed

Serializer, Gen 2 Flex

Slide 4/15

May 18th, 2016

Serializer, Gen 1 Flex

SALT8, Gen 1 Flex

- Still need to look at SALT8 through flex gen 2
- Plan to remove short-causing pin as per Nadim's instructions
- So far cable performance is very similar

Flex test plans

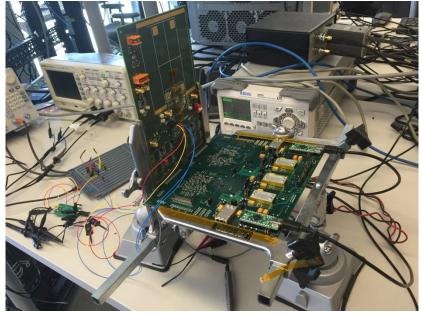
- Broken TFC line limits test options
- Repeat measurements with SALT as signal source replacing serializer
 - Try different SLVS drive current, common mode
- Power SALT8 through flex cable, re-evaluate signal quality
- Validate SALT8 communication over gen2 flex cable
- Fill the Gen2 STAVE Flex cable with system mix of 40 MHz and 320 Mbps differential signals using 4 COMET boards

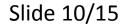
COMET Status

- 9 COMETs assembled and functioning 3 fully reworked
 - One board for CERN here to demonstrate functionality
 - Will ship additional boards to Syracuse, Milano
- Features implemented:
 - USB interface
 - TFC
 - Single e-link
 - SALT8 communication
 - COMET-COMET communication
- Gateware plan: send and interpret 3 e-links, then 5, then send 20
 - Milano test plans? What stage is useful?

COMET Operation

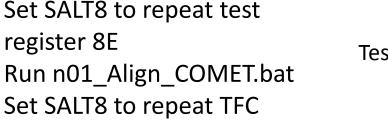
- Power: 5V
- Program FPGA: Microsemi FlashPro 4
- FPGA directly controlled via CSV files
 - nBytes (9 or 256)
 - Start header
 - Transfer type
 - Control/TFC/e-link data
 - Checksum (not functional)
 - Stop header
- Three functions for USB interface
 - FT_Open (USB module)
 - FT_Write (USB module, csv file)
 - FT_Read (USB module, read config csv file, nBytes)
- FTDI USB module requires Windows OS


Slide 8/15



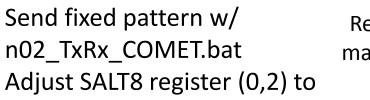
COMET Operation

- Prepared BAT files:
- n01_Align_COMET.bat
 - Open FTDI module
 - Start alignment
 - Stop alignment
- n02_TxRx_COMET.bat
 - Open FTDI module
 - Fill TFC registers from PC
 - Write out TFC registers (repeatedly)
 - Read out e-link (once)
 - Write e-link registers to PC
 - Optional: Check registers for ascending sequence

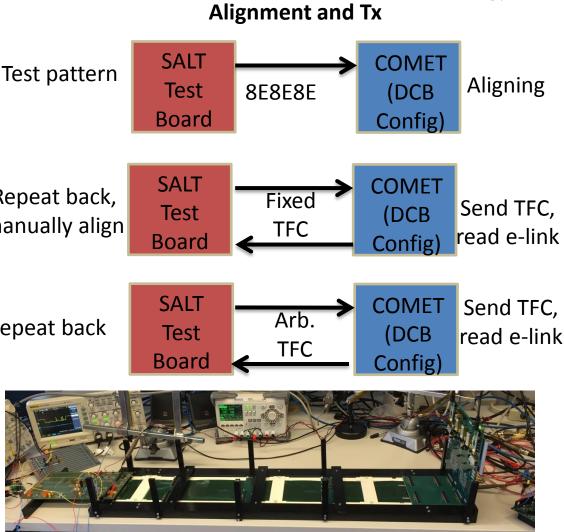


LHC

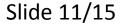
register


May 18th, 2016

COMET-SALT Communication

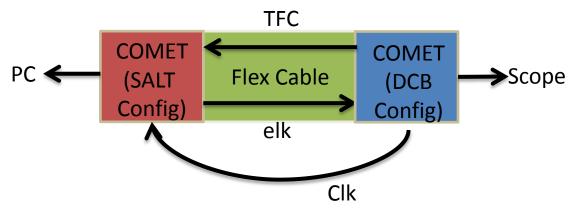


Repeat back, manually align


Repeat back

align to TFC Can now send and receive arbitrary sequences

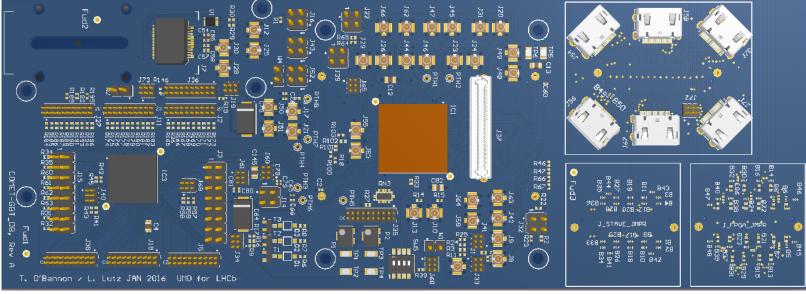




- Bug in COMET-COMET communication fixed
- Clocks power up in deterministic phase

LHC

- No bit errors observed at the level of 1 in 10⁷
- Work ongoing to instantiate additional e-links
 - FPGA more restricted than expected
- Operation: As above, but requires both COMETs to send and align to 8E test pattern simultaneously



COMET GBT DB (DCB SubCircuit prototype)

- Power provided from COMET regulators (plugs in replacing passive DB)
- Set registers via CERN I2C dongle (wire harness needed)
- Each board incorporates 1 GBTx, 1 GBT-SCA
- SFP+ connector accommodates VTTx/VTRx or commercial equivalent
 - Requires different polarity and pull-up voltage configured by jumpers
- Separate jumper boards connect GBTx inputs to STAVE e-links, FPGA output pins
- Additional jumper board for HDMI connectors
- Additional configuration via U.FL cables
- Slide 12/15 Clock/TFC lines, refclk i/o, test outputs, etc.

May 18th, 2016

GBT DB Status

- COMET GBT DB assembly in progress
- 2 boards with GBTx oscillator (1 UMD, 1 Syracuse), 1 without (UMD)
- Have components for 2 more (limiting component GBT-SCA)
- Expected delivery date: June 3rd
- I2C configuration developed through CERN GBTx webpage
 - XOSC, Widebus, automatic phase aligner tracking (initially)
- Plan: immediately begin verifying functionality, then send to Syracuse for slice test
 - Initial test:
 - Power on, write/read I2C registers
 - Set test clock output to reference clock
 - Register 319[4:0] =0, Register 283[6:0] =1
 - Check refclk0 on flex cable

GBTx loopback test

- Connect GBTx_1 rfclk out to GBTx_2 rfclk in
- Connect GBTx_1 Tx to GBTx_2 Rx
 - Directly via U.FL cables
 - Incorporate copper SFP+ connector
 - Incorporate VTRx/SFP+ and optical fibers
- Write data to GBTx_1 elk from COMET FPGA
- Read data out from GBTx_2
 - via COMET FPGA (requires moving pins in COMET gateware)
 - via Tx to logic analyzer (more difficult to validate output, requires internal loopback in GBTx_2)

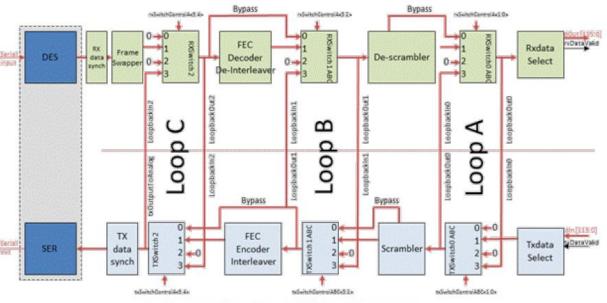


Figure 17 GBTX data path block diagram

- Any additional validation before sending board to Syracuse?
- Next steps:
 - Interface with SALT8
 - Program I2C from COMET

May 18th, 2016

DCB EDR Objectives

- Evaluate SALT communication via STAVE Flex cable interconnections
 - SALT8 using COMET configured with the Passive DB for 3 e-links, 1 TFC, and 1 ref clock
 - Implemented except for 2 e-links, need working signal lines to evaluate in gen 2 flex
- Evaluate STAVE Flex cable interconnections with full capacity signal environment
 - Fill the Gen2 STAVE Flex cable with system mix of 40 MHz and 320 Mbps differential signals using 4 COMET boards
 - Specifically evaluate the effects of crosstalk and i2C interface margins
- Complete PCB layout study for backplane, DCB, and master-control boards designs
 - Complete design trade of crosstalk versus differential pair spacing within planned PCB stackups
 - Validate crosstalk performance with test PCB
- Complete the COMET GBT daughter board design, layout, and build.
 - Assembly in progress, will start tests immediately with plans to complete all evaluations well before the DCB pre-production readiness review (~Nov 2016)