

Characterisation of 2nd generation flex cables

Nadim Conti

On behalf of INFN - Sezione di Milano

Second generation flex cable changelog

Technology: Full-flex + stiffener design

- Stack-up: Two double cores
- Traces with/space adjusted in the inner layers to keep Zdiff ~ 100 Ohm
- Power traces width increased from 4 mm to 6-7 mm
- Digital and analog power traces maintained just in case
- Central symmetry maintained

Test setup

Test setup

- Milli-Ohmeter for precise Resistance and DC measurement
- Sampling oscilloscope with dual channel TDR module for trace impedance characterization
- Digital signal analyzer for signal integrity measurement + low jitter PRBS generator
- Passive board provided by Maryland

Digital power lines resistance measurements (one way)

Flex position	Current [A]	Resistance [mOhm]	
P1	3	114±3	
P2	1	101±2	
Р3	1	84±1	
P4	1	41±1	

Power lines resistance measurements (one way)

- A single via (0.6x0.3mm) can withstand at least up to 3A
- We have consistency between AnSys SiWave simulations and our measurements, achieving a maximum of 6% deviation 1.5% on average.

Differential pairs resistance measurements

Dataflex position	Resistance @10mA [Ohm]	Resistance @20mA [Ohm]	Layer
P1	5.211±0.09	5.224±0.10	Тор
P1	7.751±0.12	7.767±0.12	Inner

By climbing from 10 to 20mA we consistently get an increase of 20mOhm ca.

Differential pairs resistance measurements

- CERN confirmed top-layer lines to be thicker than expected (30um, originally 22.5um)
- After an optical inspection we have also found them to be thinner (90um, designed to be 115um)
- Section area ratio is consistent with resistance measurements and symulations

To do: flex micro-sectioning to analyze traces geometry & multiple samples

Time Domain Reflectomery (TDR) Measurements

Time Domain Reflectomery (TDR) Measurements

- P2, P3 and P4 behave like P1
- 6 Ohms slope in both layers
- Reflections are probably smoothing the graph
- We can't extract the "line model" yet
- Top-Middle differences are resembling what we're supposing the flex section to be

Crosstalk measurements

Crosstalk measurements

We have measured FEXT in every combination (top-middle, top-top, middle-middle)

@10MHz & @160MHz we consistently have about 1% Far End Cross-Talk

(In theory it should be around 0.8%)

Far-end eye diagrams

Eye wide open @160MHz, S/N>10 and jitter(RMS) around 36ps (12ps due to the setup)

Far-end eye diagrams

The Eye is still open @360MHz but then the S/N goes below 8, jitter(RMS)=40ps

Summary

- Resistance expectations achieved, flexes are fully working with promising results
- We still have to consolidate the production line to achieve the best impedance matching
- HV distribution will be tested soon
- We can trust Ansys and Hyperlinx simulations for further development of flexes
- We have consistent measurements between different flexes (made with the same process)
- Via behaviour will be analyzed by routing a few via-chains in the future release
- Extensive testing setup is still in discussion