Update on PET training demonstrator at INFN

14/04/2016

Giancarlo Sportelli

Department of Physics – University of Pisa, Italy National Institute of Nuclear Physics – Pisa, Italy

The "dedicated" DAQ approach

- A system is "dedicated" when it is designed with a specific application in mind
- Technically, it is a system designed against an unconventional set of constraints

Examples of constraints	
Full angular coverage	Free space
Wide field of view	Synchronization
Good coincidence resolution	High counting capabilities
Good energy resolution	Multiple energy thresholds
LOF resolution	Multiple coincidence detection
Sensitivity	E.M. compatibility

Dedicated PET systems at **INFN** Pisa

 Range monitoring in hadron therapy with PSPMT (TPS/RDH/DoPET)

 Range monitoring in hadron therapy with SIPMs (INSIDE)

 PET/MRI/EEG brain imaging with SiPMs (TRIMAGE)

Modularization as the key for specialization

- Developing a DAQ system is a time consuming task in developing a PET system
- Developing a dedicated DAQ for every application would be inefficient
- Modularization has been our strategy to access different applications
 - It allows to intrinsically parallelize parts of the system
 - It allows for easier adaptation or upgrade

The training problem

- As systems become more specialized, they start to become unsuitable for students training
- Dedicated systems can present design choices that can be hard to understand without proper scientific and technological background
- Dedicated systems have often less coverage in the literature than conventional ones

A PET training demonstrator

pipet

3D printed PET mechanics

- The two detectors are mounted on a 3D printed precision holder
- The holder is made of a polyamide based plastic material (PA2200)
- Mechanical precision is ± 0.15 mm
- Heatproof up to 80 °C

MAPMT + LYSO detector assembly

Accessible FPGA-based

electronics

Test points

Python-based high level development framework

- Students can connect remotely with their own laptop
- They start learning calibration techniques
- Then they measure the key characteristics of the PET system
- Eventually they customize the firmware and software to improve the system performances

Calibration exercises

Pixel identification

The pipet workbench

A simple problem that can be studied with pipet

- DoPET MA-PMTs show steep loss in count rates at high input rates
- The problem was the PMT itself!

Paralyzable dead time model

Output rate [Hz]

Future works

- Detectors rotation
- SiPM based front-end
- TDC based coincidence processing
- Single-mode data acquisition
- Similar framework for tomographic reconstruction

Conclusions

- We have developed a PET demonstrator that is simple but still compatible with our latest technologies
- The demonstrator can be used either for training or testing specific DAQ characteristics