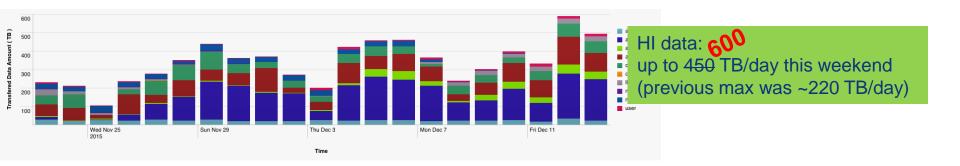
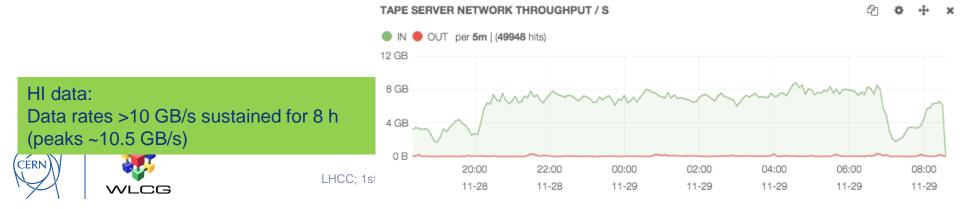
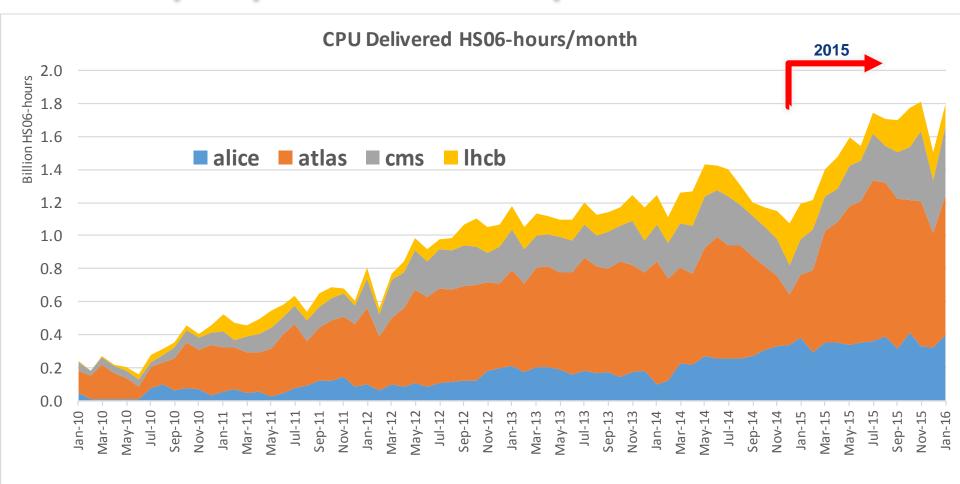
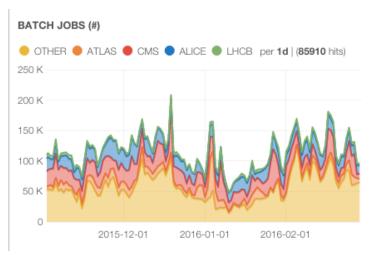
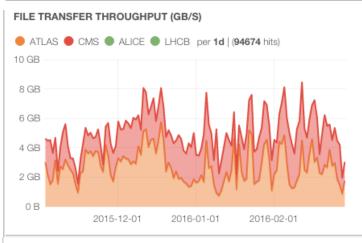

Ian Bird, CERN
WLCG LHCC Referee Meeting
1st March 2016

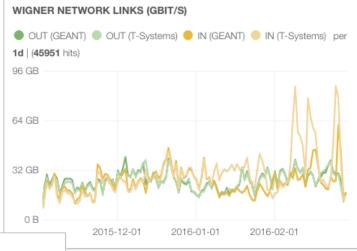

WLCG Status Report




2015 data in Tier 0 - update


Ramp-up of CPU - update





Tier 0

MEYRIN DATA CENTRE	
	last_value
 Number of Cores in Meyrin 	124,667
 Number of Drives in Meyrin 	70,994
Number of 10G NIC in Meyrin	6,007
 Number of 1G NIC in Meyrin 	21,651
 Number of Processors in Meyrin 	21,901
 Number of Servers in Meyrin 	11,720
Total Disk Space in Meyrin (TB)	122,859
Total Memory Capacity in Meyrin (TB)	509

WIGNER DATA CENTRE	
	last_value
 Number of Cores in Wigner 	43,328
Number of Drives in Wigner	23,180
 Number of 10G NIC in Wigner 	1,399
Numer of 1G NIC in Wigner	5,067
 Number of Processors in Wigner 	5,418
Number of Servers in Wigner	2,712
 Total Disk Space in Wigner (TB) 	71,738
 Total Memory Capacity in Wigner (TB) 	172

an Bird; CERN

Pledge installation for 2016

- On track, no particular concerns have been flagged
 - KIT have additional funding and will be able to increase pledge ~October
- Triumf Tier 1 is moving to SFU, but is planning seamless transition with dual resources

LHCC: 1st March 2016

NL Tier 1 is also moving locations, but will have a 2 week down time in Autumn 2016

Computing upgrades Summary from Lisbon workshop

Introduction

- □ Two days devoted to medium term (Run 2-3) and longer term (Run 4) concerns
- ~140 people registered
- Aimed for more of a discussion format rather than presentations
 - (Informal) feedback from many said this was useful
 - Some aspects probably needed a bit more preparation to be more successful

Observations

- Probably a lack of clarity over what the situation for Phase 2 upgrades will be:
 - In terms of requirements what is the real scale of the problem
 need better estimates
 - What we can really expect from technology
 - An understanding of the real limitations of the system we have today
- We should also bear in mind that while we potentially need to instigate revolutionary changes in computing models, nevertheless we will have to face an evolutionary deployment
- Concerns over software and efficiency (in all aspects) will be a significant area of work
- Commonalities may be possible in new tools/services or next generation of existing
- Propose a number of activities to address some of these aspects

1) Definition of the upgrade problem

Set up a study group to:

- Firstly:
 - Establish and update estimates of actual computing requirements for HL-LHC, more realistic than previous estimates:
 - o what are the baseline numbers for data volumes/rates, CPU needs, etc.?
 - Build a realistic cost model of LHC computing, help to evaluate various models and proposals – this will be a key to guiding direction of solutions
- Secondly:
 - Look at the long term evolution of computing models and large scale infrastructure
 - Need both visionary "revolutionary" model(s) that challenge assumptions, and "evolutionary" alternatives
 - Explore possible models that address (propose strawman models)
 - Today's shortcomings
 - Try to use best of evolving technologies
 - Address expectations of how the environment may evolve
 - Large scale joint procurements, clouds, interaction with other HEP/Astro-P/other sciences

Possible convergence of (the next generation of) main toolsets

2) Software-related activities

Strengthen the HSF:

- "Improve software performance"
 - Need to define what the goals and to define metrics for performance:
 - E.g. time to completion vs throughput vs cost
 - Continue concurrency forum/HSF activities but try and promote more
 - And other initiatives like reconstruction algorithms etc
- Techlab
 - expand as a larger scale facility under HSF umbrella
 - Include support tools (profilers, compilers, memory etc)
 - Including support, training, etc
 - openlab can also help here
 - Should be collaborative CERN + other labs
- Technology review
 - "PASTA" reform the activity make into an ongoing activity, updating report every ~2 years
 - Broad group of interested experts
 - Also under HSF umbrella strongly related to the above activities
- What can be done about long term careers and recognition of software development

10

3) Performance evaluation/"modelling"

- Investigate real-world performance of today's systems:
 - Why is performance so far from simple estimates of what it should be?
 - Different granularities/scales:
 - Application on a machine
 - Site level: bottlenecks, large-scale performance
 - Different scale sites, different workflows
 - Overall distributed system
 - At which level?
 - Are data models and workflows appropriate?

LHCC; 1st March 2016

- Once we have a better handle of actual performance can we derive some useful models/parameterisations etc?
 - Useful enough to guide choices of computing models don't have to be perfect or complete
 - This feeds into any cost models
- Small team in IT starting to work on this and consolidate existing efforts
 - Define a programme of work to look at current performance and concerns; define initial goals

4) Prototyping (demonstrators)

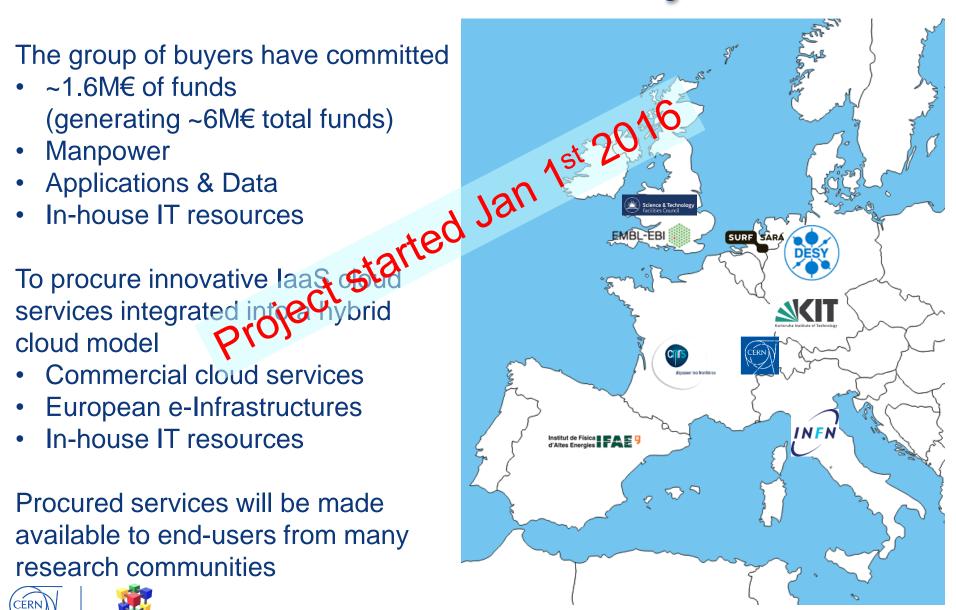
- Some specific prototyping of some of the ideas that arise from the above activities
- For example:
 - Data or storage management
 - Storage federations, caches rather than "SE"
 - o Etc.
 - Optimisation of sites with little effort or expertise
 - "Site in a box" appliance,
 - What about cache, stage-out, etc
 - Others as ideas arise
- Common activity here would help to evolve into common solutions in production eventually

Summary

- Medium term
 - A lot of work ongoing
 - Including other aspects not discussed in Lisbon (e.g. cost of operations)
- Longer term
 - 3 areas of work proposed
 - MB will oversee, and define a more concrete plan
- Prototypes/demonstrators
 - A useful way to explore ideas and eventually converge on common solutions?

HNSciCloud H2020 PCP Project

The group of buyers have committed


- ~1.6M€ of funds (generating ~6M€ total funds)

- Commercial cloud services
- European e-Infrastructures
- In-house IT resources

Procured services will be made available to end-users from many research communities

European Open Science Cloud

- □ The European Open Science Cloud is promoted in the context of the movement towards open science bringing ever greater transparency, accessibility and accountability,
 - stakeholders in the research process increasingly expect to be able to access and reuse the outputs of taxpayer funded research.
- The action INFRADEV-04-2016 (10M€ deadline 22 June 2016) foresees the evolution of existing e-Infrastructures into a 'European Open Science Cloud' (EOSC).
 - A pilot action to demonstrate how to make scientific data and data-analysis services more widely available enabling greater data sharing and re-use.
 - EOSC should deliver trusted access to services & systems in a federated environment by leveraging existing services, across Member States and disciplinary, social and geographical borders, where data complies with the "FAIR" principles (Findable, Accessible, Interoperable, Re-usable)
- The EC has set-up a High Level Expert Group on OSC which has consulted widely and will shortly produce a report with recommendations which will influence the direction of the EOSC.
- ☐ The scope of EOSC is very broad with ambitious goals
 - this first pilot funding call is very modest. As such it should really been seen as a preparatory phase and what is more important (for CERN) is to ensure that the direction the EOSC takes can serve the physics community.

EOSC ...

- There are a range of opinions about what should be the focus of pilot EOSC within the EC directorates, across the ESFRI research infrastructures and the role of European level e-infrastructures as well as the Commercial sector (both as service providers and users).
- CERN has been discussing these questions with its partners in the context of EU-T0, EIROforum and Helix Nebula
- Clearly, if the EOSC is to achieve the goals outlined by the High Level Expert Group then it will require a significant increase in funding compared to that invested by the stakeholders today.
 - Improving cost-effectiveness through new technology, better governance and innovative business models will certainly help but will not offset all the increased costs of making a wider range of interoperable services available to far more users.
- This is a message that should be reinforced by funding agencies when they meet with the EC in a dedicated meeting on the 15th March.
- □ Upcoming important events include the conference on open science being organised as part of the Dutch presidency of the EC (April 2016).
- □ The EC will also issue a communication on the Cloud in the same timeframe.

