
SPL, project & status

F. Gerigk for the SPL study group SLHC public event, 26.02.2009

http://www.cern.ch/project-spl

Outline

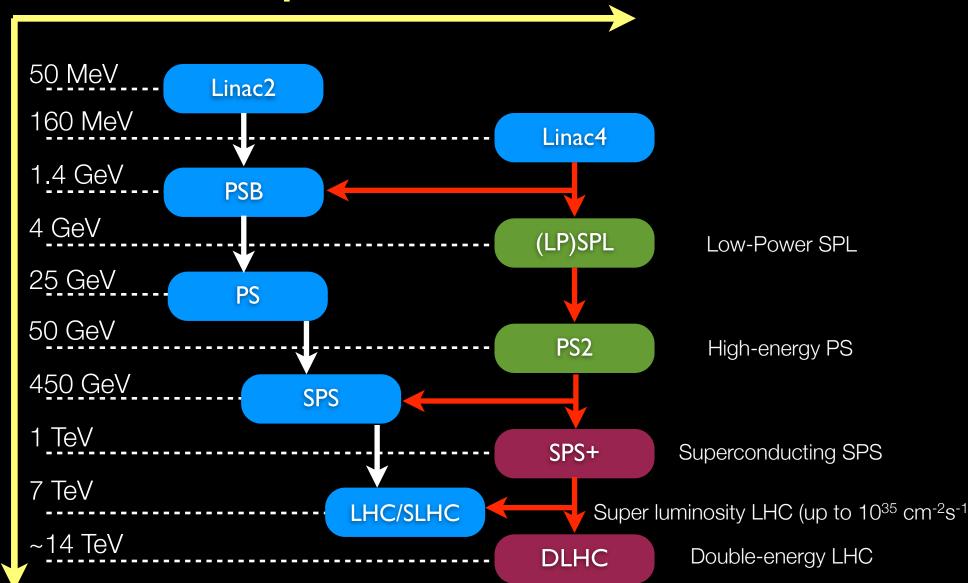
- motivation,
- staged implementation,
- political/technical milestones:
 - ➡ comparison SPL/RCS,
 - ➡ site decision,
 - → parameter review,
 - start of SPL collaboration,
- R&D status,
- planning,

motivation to renew the injector chain

1.) reliability:

- ageing accelerators operate far beyond initial specifications (PS is 48 years old!),
- use present day technology to meet the needs of the (S)LHC,

2.) overcome performance limitation:


- excessive incoherent space charge tune shift (ΔQ_{SC}) at injection into PSB/PS,
- → increase injection energy into PSB from 50 → 160 MeV: Linac4 (reduces ΔQ_{SC} by 50%),
- → increase injection energy into PS2 from 1.4 to 4 GeV: SPL, (acceptable ΔQ_{SC} for maximum foreseen SLHC beam),
- ➡ increase injection energy into SPS from 25 to 50 GeV: PS2,

 $\Delta Q_{SC} \propto \frac{N_b}{\varepsilon_{x,y}} \cdot \frac{R}{\beta\gamma^2} \qquad N_b - p/\text{bunch}, \ \varepsilon_{x,y} - \text{norm. tr. emittances, } R - \text{mean synchr. rad., } \beta\gamma - \text{rel. par.}$

LHC injector upgrade (R. Garoby)

beam power

energy

SPL construction, stage 1:

Linac4 (160 MeV)

352.2 MHz

- Iow-power (<5 kW), Iow duty cycle (0.1%) PSB injector</p>
- under construction and designed for high duty cycle (HP-SPL),
- tunnel can be extended in a straight line for the SPL,
- radiation protection and civil engineering works foresee highduty cycle operation (up to 10%),
- start of operation foreseen for 2013,

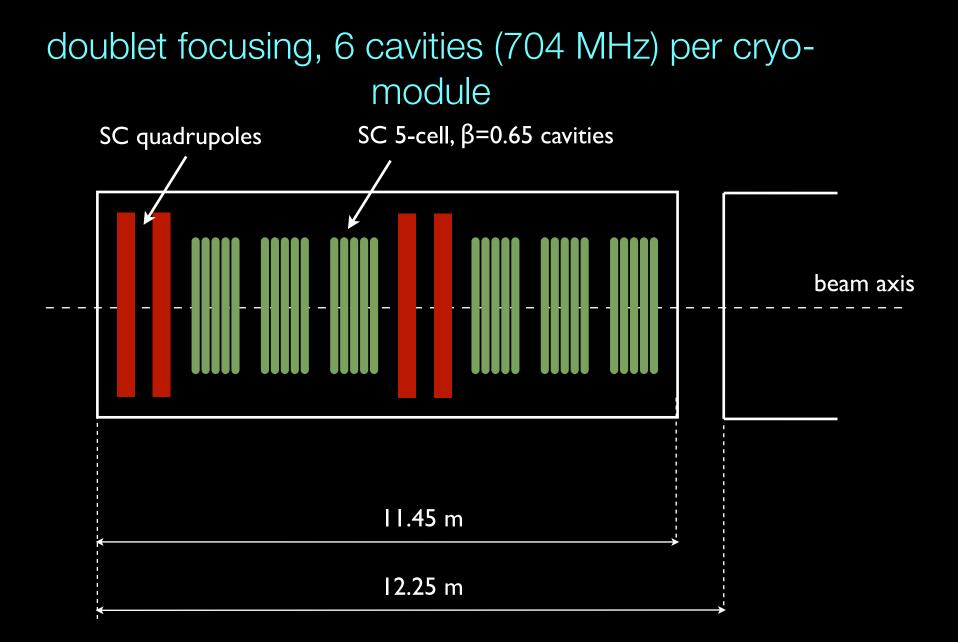
SPL construction, stage 2:

LP-SPL (4 GeV)

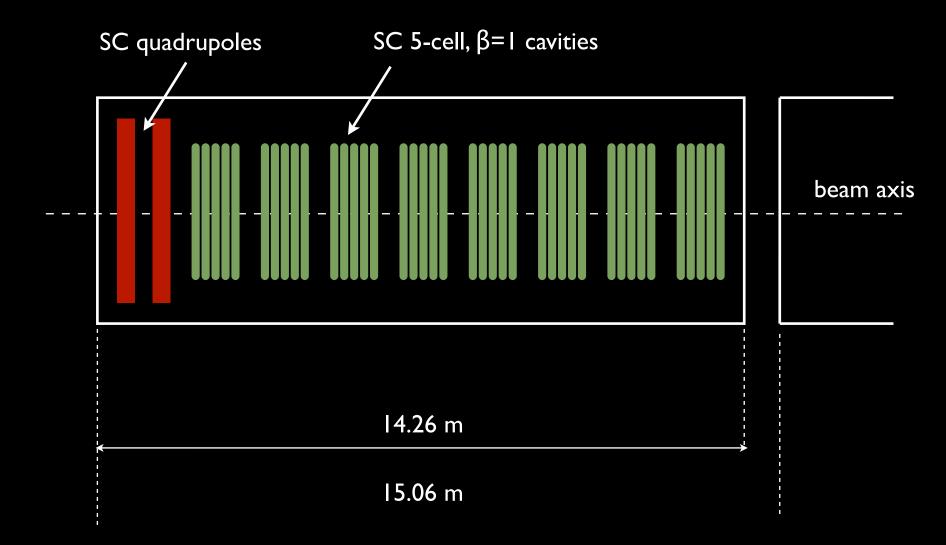
- construction of Low-Power SPL together with PS2,
- main users: PS2 (LHC), ISOLDE upgrade, EURISOL-0 (?),
- earliest operation in 2018

kinetic energy	4 GeV
beam power (@ 4 GeV)	0.19 MW
repetition rate	~2 Hz
pulse length	1.2 ms
average pulse current	20 mA
protons p. pulse	1.5 10 ¹⁴
length (SC linac)	400 m

SPL construction, stage 3:


HP-SPL (5 GeV)

- addition of klystrons,
- cavities from 4 to 5 GeV,
- replacement of all modulators,
- upgrade of electric/cryogenic infrastructure,
- possible high-power users: EURISOL, neutrinos, LHeC,
- possible start of operation: 2020


kinetic energy	5 GeV
beam power	3-8 MW
repetition rate	50 Hz
pulse length	up to1.2 ms
average pulse current	0-40 mA
protons p. pulse	1.5 (3) x 10 ¹⁴
length (SC linac)	472 m

low-beta cryo-module

high-beta cryo-module

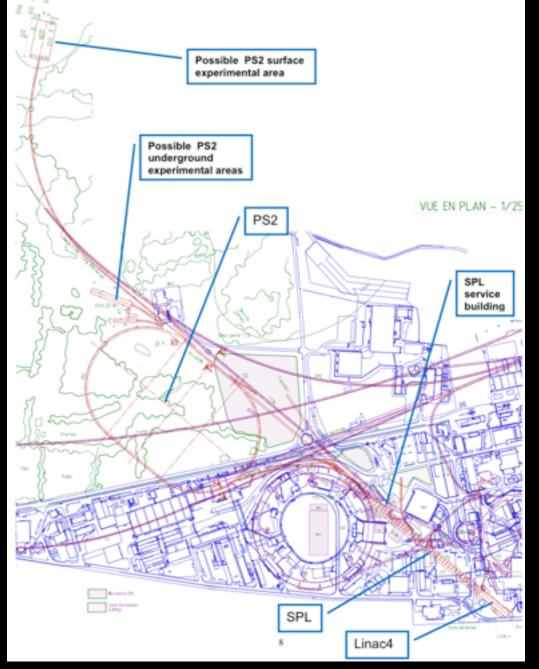
doublet focusing, 8 cavities (704 MHz) per cryo-module

S

operation type	low-power	high-power low-current	high-power high-current
E [GeV]	4	2.5 (or 5)	2.5 (and 5)
P _{beam} [MW]	0.192	3 (6)	4 (+4)
f _{rep} [Hz]	2	50	50
l _{average} [mA]	0-20	0-20	0-40
t _{pulse} [ms]	≤1.2	≤1.2	≤0.8 (+0.4)
Nprotons/pulse [10 ¹⁴]	≤1.5	≤1.5	≤2 (+1)
main user	PS2/ISOLDE	PS2/neutrinos/ EURISOL	PS2/neutrinos/ EURISOL

+ LHeC (tbd)

each option has impact on the civil engineering and technical choices for the LP-SPL!

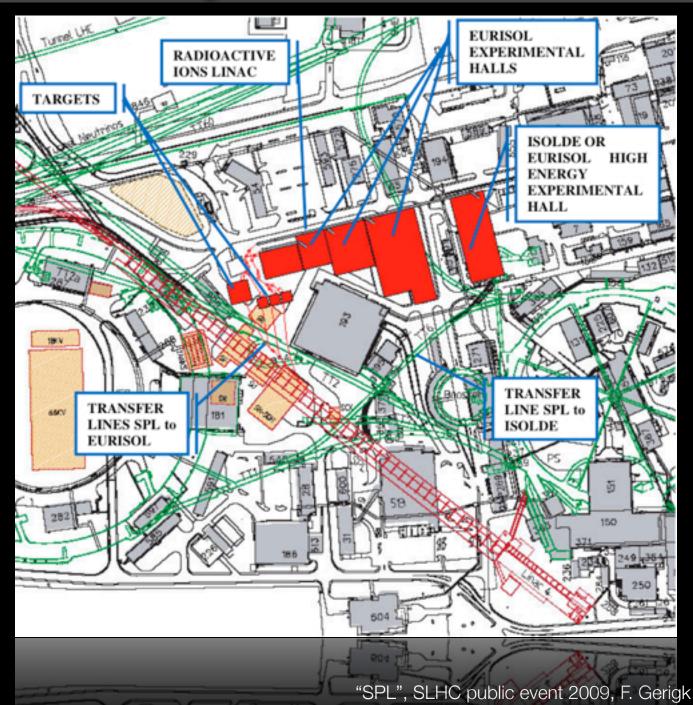

Site decision

CERN-AB-2007-061 PAF

layout on the CERN site together with Linac4/PS2

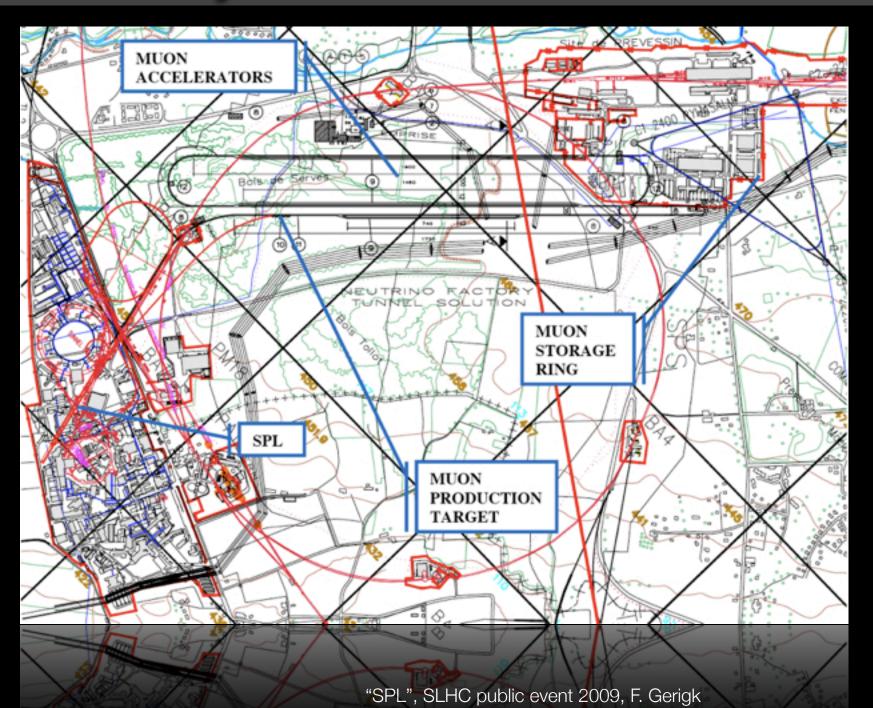
site layout: Linac4/SPL/PS2

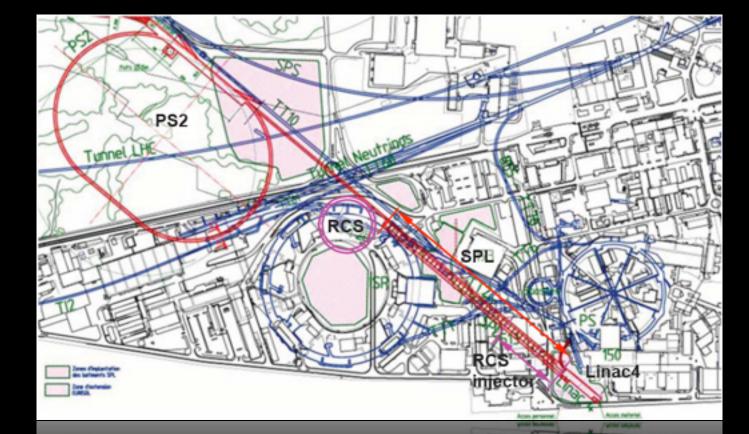
The Linac4 team was encouraged by the CERN management to make the Linac4 location consistent with a full proton injector upgrade.


- Linac4 is in a position, that allows the construction of all new LHC injectors,
- including surface buildings,
- and possible experimental areas for the PS2 beam

site layout: tunnels

 The SPL tunnel trajectory keeps necessary distances from existing tunnels/buildings (computing building 513, nTOF, transfer lines...)


site layout: EURISOL



 SPL is compatible with a possible location for EURISOL on the CERN site,

 (very preliminary layout!!)

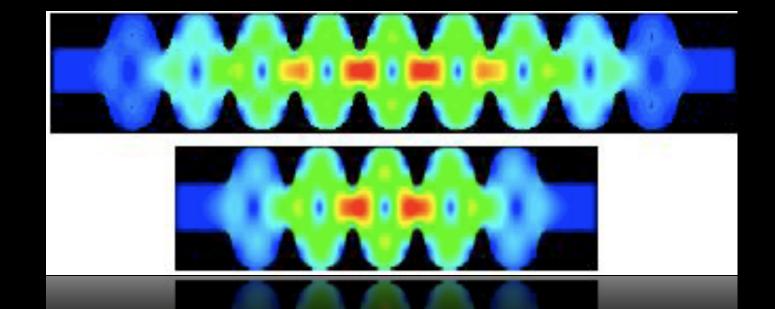
site layout: neutrinos

LP-SPL vs RCS

CERN-AB-2007-014-PAF

RF frequency & cryogenic temperature

LP-SPL vs RCS


Why not using a small RCS + "small" injector linac instead of the SPL?

Because at moderate cost (+ 30%) the LP-SPL carries the potential for high-power proton physics!

Furthermore we find the following relative merits:

	Filling time PS2	Time structure for LHC	relative proton rate	Fixed target physics	lons	upgrade potential	relative cost*
SPL	0.6 ms	inherent	2.5	ideal	acceptable	high	1.28
RCS	1.3 s	different	1	acceptable	ideal	low	1
Advantage	SPL	SPL	SPL	SPL	RCS	SPL	RCS

* only items that differ between both options have been costed

Parameter review

CERN-AB-2008-067

RF frequency & cryogenic temperature

RF frequency review: 704 MHz

frequency	704 MHz	1408 MHz
length	472 m	+12%
N _{cavities}	246	+15%
N_{β} -families	2	3
ε -growth (x/y/z)	5.6/8.2/6.8	6.3/7.8/1 <mark>2.1</mark>
long. beam loss	none in simulations	lossy runs for realistic RF gradient/phase variations
BBU (HOM)	BBU,704	1/(8128)
trapped modes	normal risk	24 higher risk
RF power density limit (RF distribution)	ok	problematic
klystrons	comfortable: MBK	difficult
overall power consumption (RF+cryo, nom. SPL)	28 MW	up to -30%
power converter	more bulky	saves tunnel space
synergy with ESS	yes	no

cryogenic temperature review: 2K

@ 704 MHz	T [K]	eq. capacity @ 4.5 K [kW]	el. power [MW]
HP SPL, 2% beam d.c. (4% cryo d.c.)	2	19.4	4.48
HP SPL, 2% beam d.c. (4% cryo d.c.)	4.5	104	26.0
LP SPL, 0.24% beam d.c. (0.32% cryo d.c.)	2	6.1	1.5
LP SPL, 0.24% beam d.c. (0.32% cryo d.c.)	4.5	11	2.75

not clear that 25 MV/m can be achieved at 4.5 K!

summary of the review


frequency/temperature:

■ the original choices of 704 MHz and 2 K were confirmed,

cavity gradient:

- 25 MV/m "on average" are very challenging and may have a high cost (in terms of reprocessing),
- 20 MV/m seems more achievable but will have an impact on linac length (or energy).

High-power RF cavity tests of fully equipped cryo-modules are mandatory for realistic SPL layout estimates!!

SPL collaborations

1st meeting, 11-12 Dec 2008

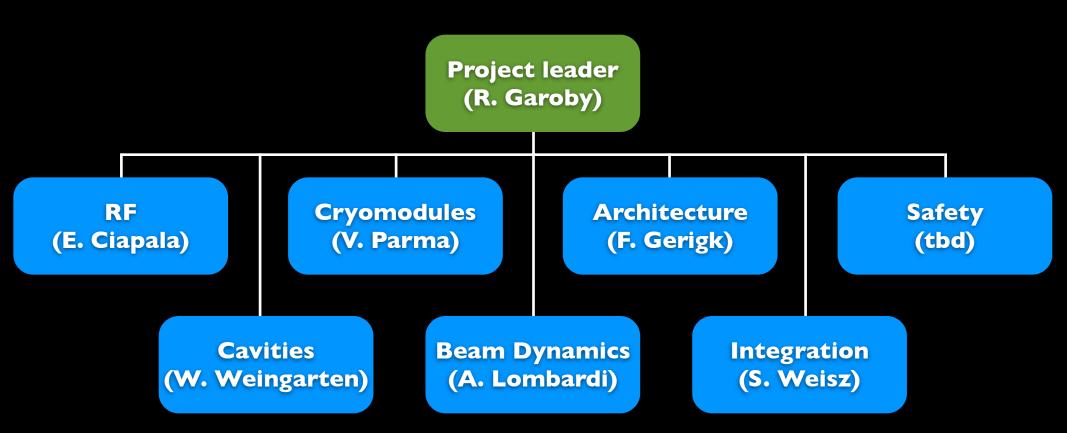
sLHC project note in preparation

agreed collaborations:

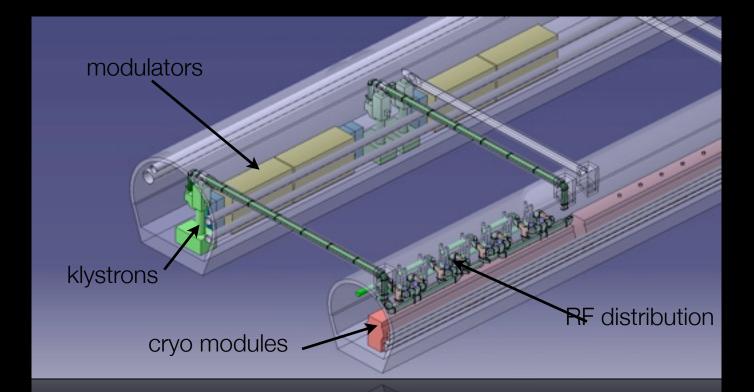
institute	subject
CEA Saclay (France)	 Design and construction of 2 β=1 cavities (EUCARD task 10.2.2), Helium vessels for 2 cavities & tools for cryomodule assembly (French in-kind contribution), Test of existing β=0.5 cavity in pulsed mode and participation to LLRF design (CNI sLHC)
CNRS/IPN Orsay (France)	 Design and construction of β=0.65 cavity (EUCARD task 10.2.1), Design and construction of prototype cryomodule (French in-kind contribution)
Soltan Institute (Poland)	 FLUKA simulations for radiation protection issues, collimator development,
ESS-S (Scandinavia)	■ beam dynamics, ■ RF developments,
Cockroft Institute (UK)	 participation to specification & design of RF system, study of RF components (RF power distribution, vector modulators, phase-locked magnetrons), study & design of low-power collimation systems,

.. under negotiation

institute	subject
ESS-Bilbao (Spain)	Design and construction of 50 Hz klystron modulator,
ESS-Debrecen (Hungary)	to be defined
Rostock University (Germany)	HOM damper design & analysis,
Stony-Brook/BNL (USA)	Design and construction of prototype β=1 cavity(ies), HOM damping
TEMF Darmstadt (Germany)	Beam influence of RF power coupler,
TRIUMF (CANADA)	Design and construction of prototype β=0.65 cavity(ies), HOM damper specifications


untreated subjects:

need	recommended action	recommended main contributor
High-power RF test stand for complete cryo-modules	upgrade SM18 at CERN	 CERN (infrastructure) ESS-Bilbao (modulator)
cost comparison of RF distribution systems	study, system definition, discussion	CERN (study)all partners (discussion)
test series of cavities (12 x β =1, 2-4 x β =0.65), test of full cryo-module	 build and test more cavities, establish realistic gradient, 	 Stony Brook/BNL/AES: β=1, TRIUMF: β=0.65, CERN: β=1
adapt CEA design for RF coupler/tuner to SPL	 study, build, test devices, integration in cryo-module 	?
HOM dampers	 study, build, test devices, integration in cryo-module 	?
define longitudinal layout (lattice, instrumentation, beam extraction)	Design	■ CERN


organisation of collaboration

- Four working groups were created:
 - ➡ beam dynamics/loss management,
 - high-power RF equipment: power distribution, circulators, loads, vector modulators,
 - cryo-module and integration,
 - cavity design & construction: cavity geometry, HOM damper, power coupler & manufacturers, processing, testing
- working groups have common meetings, phone/video conferences,
- collaboration meetings with lab representatives 1-2x per year,
- one yearly meeting at CERN open to everyone,
- a collaboration "constitution" in form of an MoU will be circulated and signed by all collaborators,

general SPL organisation at CERN

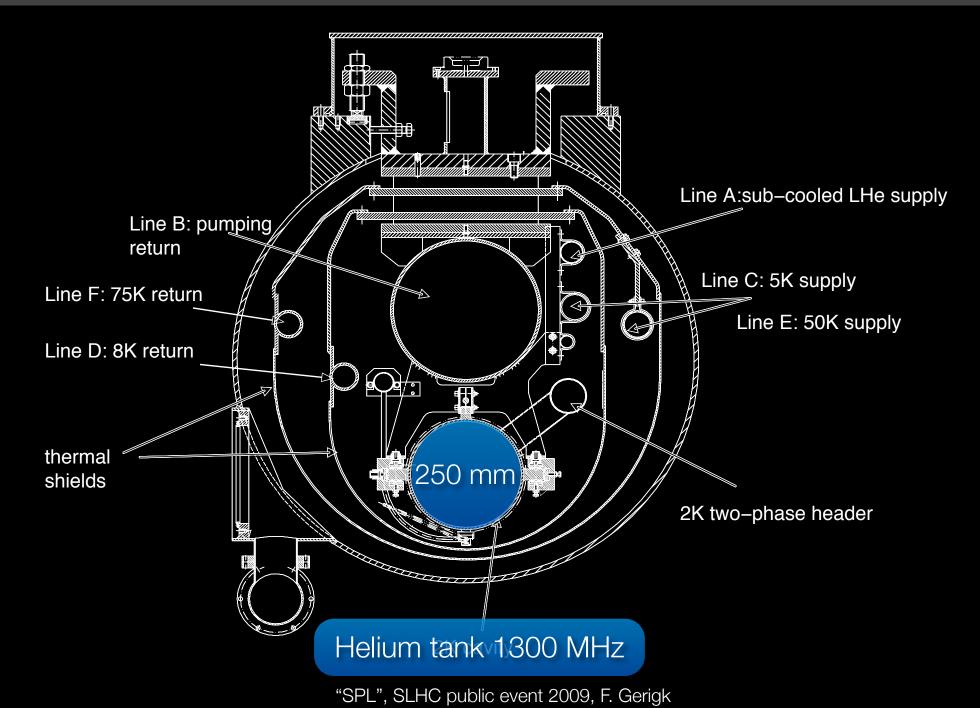
core team meets once a week

overall planning

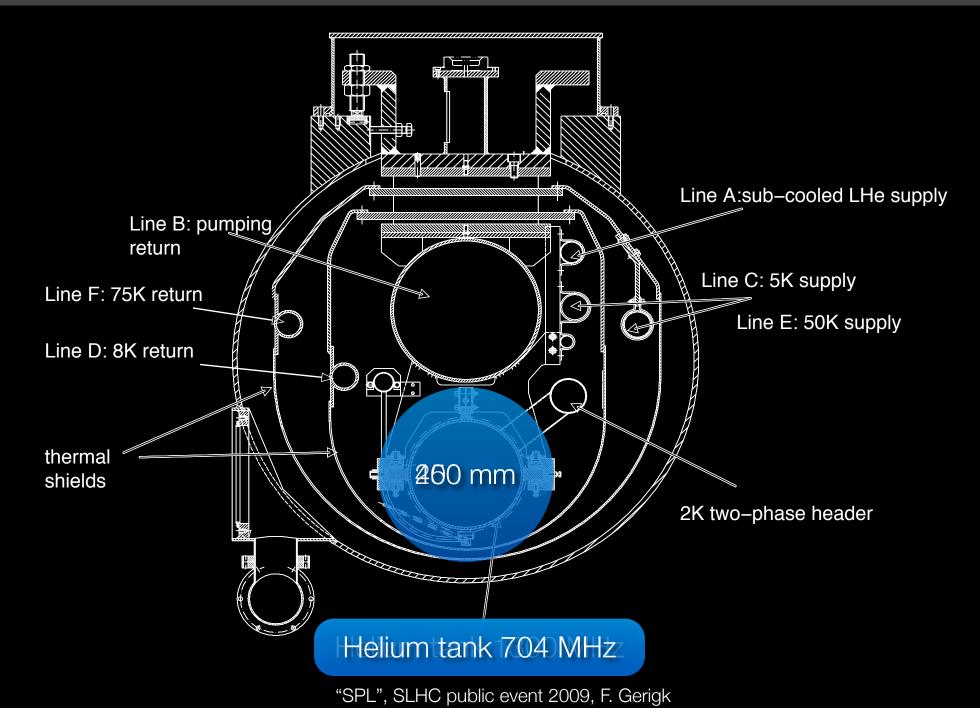
is mainly determined by civil engineering

(agressive) civil engineering draft planning

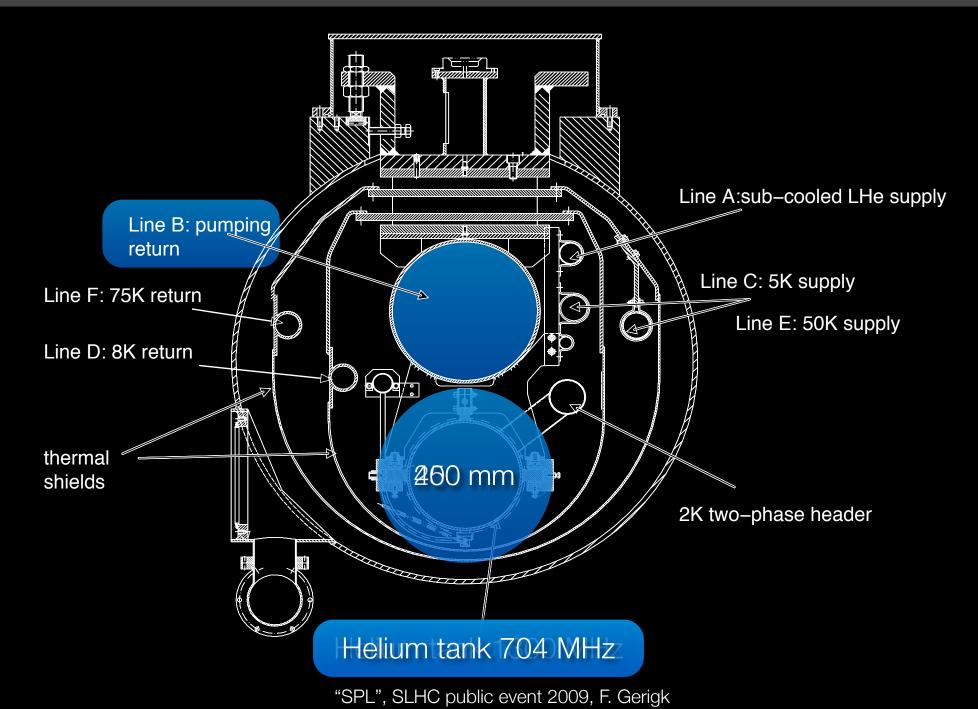
			009	201		2011	2012	2013	2014	2015	2016	2017	2018
1	All SPL and PS2 Parameters defined (for integration purposes)	_	3 4	1 2	3 4	1 2 3 4	1 2 3 4	1234	1 2 3 4	1 2 3 4	1234	1234	1 2 3 4
2	Integration studies assuming sufficient staff numbers for all groups												
3	Integration layout frozen for civil engineering (tunnels and buildings		*										
4	Call for tender for CE Consultancy services		-						1				
5	CE preliminaries studies and geological investigations			-							74		
6	Design CE totally frozen				\star								
7	Environmental impact study										-1		
8	Preparation of CE tender drawings and cost estimate				-								
9	Cost Estimate for TDR		2			\★			1/ 1/				
10	Call for tender for CE works	5			N				11		5		
11	Civil Engineering works - underground									$\langle \rangle \rangle$			
12	Civil Engineering works - surface			1	X	1							
13	Handling and lifting equipement												
14	Cooling ventilation						0						
15	Electrical works					1 1	$\langle \rangle$						
16	Access system and fire detection			V	1				11				
17	Delivery of the infrastructure and equipment				$\langle \rangle$				Y		*		
18	SPL and PS2 machine installation							ALT					
19	SPL and PS2 commisionning						14						
20	Start operation for physics				1	K							*


time is running!

summary:

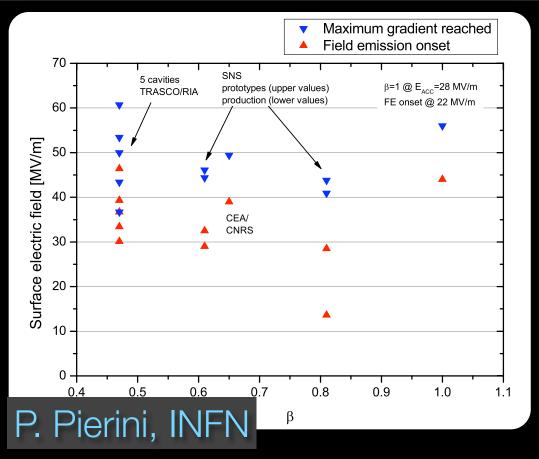

- the SPL is consistent with the general proton injector upgrade plan,
- the (old) CERN management endorsed the LP-SPL over an RCS based solution,
- a site layout for all new injectors was elaborated,
- a technical baseline exists (and was confirmed by a review) but needs to be verified by actual hardware tests,
- The "SPL collaboration" is taking shape,
- technical design report foreseen for 2011, earliest start of construction in 2012,
- the current planning can only succeed with sufficient resources!

additional slides


size of Helium tank

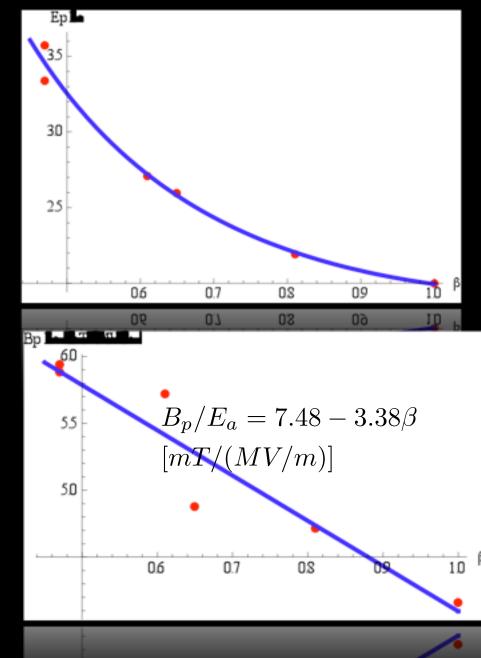
size of Helium tank

size of Helium tank

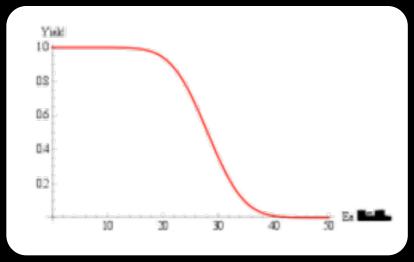


Can we re-use the ILC cryo-module?

At 2K we can re-use the ILC design principle for both frequencies, but:


- the port openings will have to be adapted to the SPL cavities (power coupler, HOM coupler, ...),
- the design has to be adopted for the SPL slope of 1.7 deg,
- dynamic heat load of the HPSPL is estimated to be ~10 times higher than for ILC,
- ➡ an identical copy of the ILC cryo-module cannot be used!
- unlikely that we can have a major saving on the cryo-module cost, when going to 1408 MHz!

SC cavity performance for $\beta < 1$



gradient independent of freq.

25 MV/m looks challenging but not impossible!

yield vs performance

for electropolished ILC cavities at 1300 MHz:

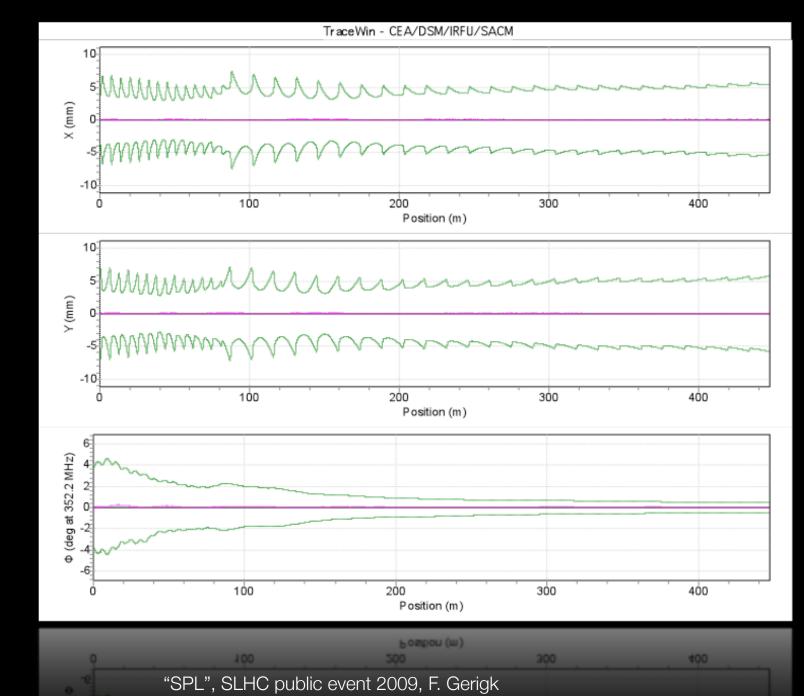
- at 28.1 MV/m the yield is $\approx 50\%$,
- at 25 MV/m the yield is \approx 75%,

but basically no difference between single cell and multi-cell results!

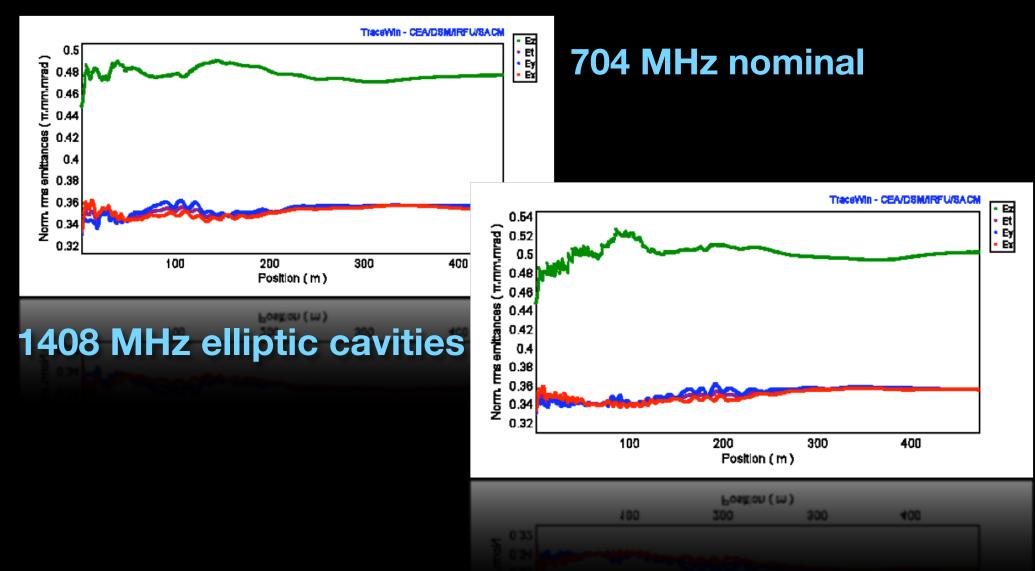
Laboratory	freq. [MHz]	<e<sub>acc> [MV/m]</e<sub>	ΔE _{acc} [MV/m]	ΔE _{acc} / E _{acc} [%]	E _{acc} at 90/50% yield
DESY, 9-cell	1300	28	5.2	19	22/28
ORNL/JLAB, 6-cell β =0.61, (extrapolated to β =1)	805	17.1 (23)	1.9 (2.6)	11 (11)	15/17 (20/23)
ORNL/JLAB, 6-cell β =0.81, (extrapolated to β =1)	805	18.2 (20)	2.6 (2.8)	14 (14)	15/18 (16/20)

Q dependance at 25 MV/m

at 2K: $Q_{704 \text{ MHz}} = 2.5 \times Q_{1408 \text{ MHz}}$ at 4.5K: $Q_{704 \text{ MHz}} = 3.0 \times Q_{1408 \text{ MHz}}$ at 704 MHz: $Q_{2 \text{ K}} = 21 \times Q_{4.5 \text{ K}}$ at 1408 MHz: $Q_{2 \text{ K}} = 26 \times Q_{4.5 \text{ K}}$


beam dynamics: longitudinal errors

Case I: $\Delta E (1\sigma) = 125 \text{ keV} \pm 0.5 \text{ deg from Linac4}, \pm 0.5\% \pm 0.5 \text{ deg in}$ SPL. **Case II:** $\Delta E (1\sigma) = 125 \text{ keV} \pm 1 \text{ deg from Linac4} \pm 1\% \pm 1 \text{ deg in SPL}.$


SPL type	nominal improved		high frequency		spoke/elliptical	
	case I	case II	case I	case II	case l	case II
frequency [MHz]	704.4		1408.8		352.2/1408.8	
beta families	0.65/0.92		0.6/0.76/0.94		0.67/0.8/0.94	
Δ ε _{x,rms} [%]	0.07±0.27	0.21±0.41	0.24±0.62	1.02±1.11	0.05±0.22	0.24±0.49
Δ ε _{y,rms} [%]	0.18±0.26	0.59±0.53	0.10±0.38	0.42±0.75	0.09±0.24	0.33±0.50
$\Delta \epsilon_{z,rms}$ [%]	0.40±0.58	1.13±1.33	0.27±0.70	1.90±1.88	0.19±0.36	0.81±0.76
ΔE [MeV]	±2.0	±3.8	±1.8	±3.5	±1.8	±3.5
$\Delta \phi$ [deg, st.dev.]	0.26	0.57	0.30	0.61	0.30	0.61
Lossy runs	0	0	9/500	21/500	0	0

beam dynamics: 5 x rms envelopes

nominal:

rms emittances

Iongitudinal plane is more sensitive for 1408 MHz due to 4x frequency jump