# **PS2 Project and Status**

**Michael Benedikt (BE-OP)** 

for the PS2 Working Group

26/02/2009

# Contents

- Performance requirements and main parameters
- Machine integration in the complex
- Technical choices on lattice design and RF system
- Beam performance for LHC and HI fixed target beams
- Planning

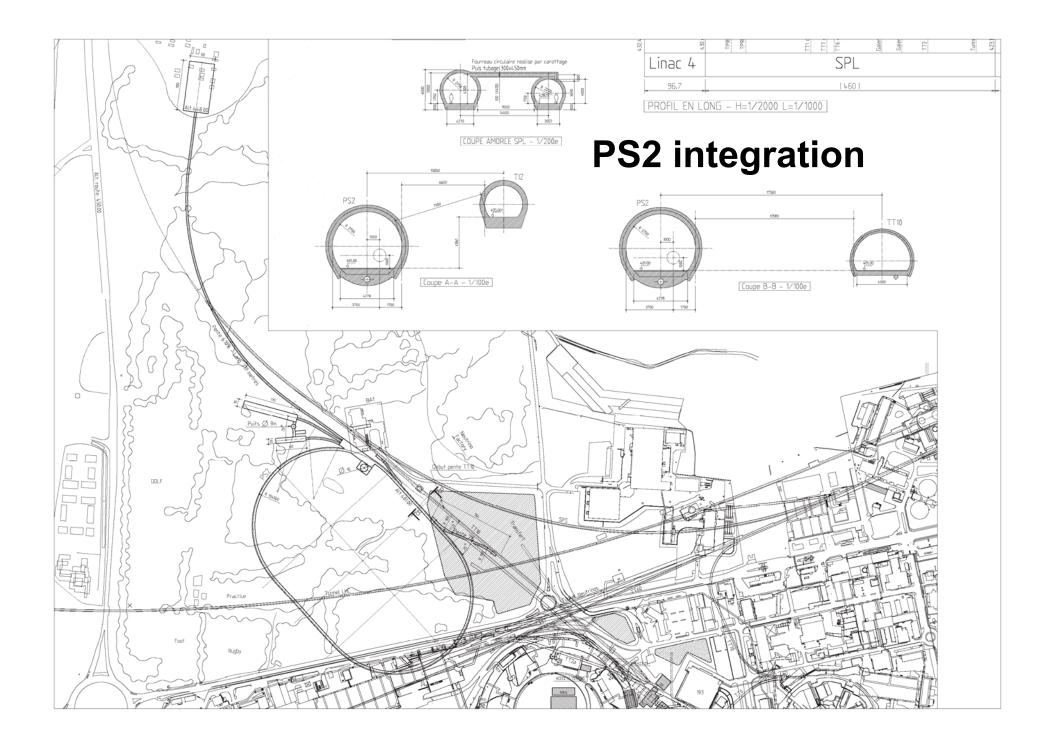
# **Performance requirements and parameters**

- Starting point for the design is brightness (N/ $\epsilon_n$ ) for LHC beams
  - Design goal: Twice higher brightness than "ultimate" 25ns beam with 20% intensity reserve for transfer losses
    - 4.0×10<sup>11</sup>ppb = 2 × 1.7×10<sup>11</sup> × 1.2 in transverse emittances  $3\mu m$
- Injection energy
  - Determined by the beam brightness of the LHC beam
  - − High density means defocusing (Coulomb) force that must be counteracted by attractive force of parallel currents →overall ∝  $(N/ε_n)/(βγ^2)$ 
    - 4 GeV injection energy, for conditions similar to existing PS

#### • Extraction energy

- Injection into SPS above transition energy to reduce space charge effects
- Higher energy gives smaller transverse emittances and beam sizes and therefore reduced losses
- Potential for long-term SPS replacement with higher energy
  - ~50 GeV extraction energy

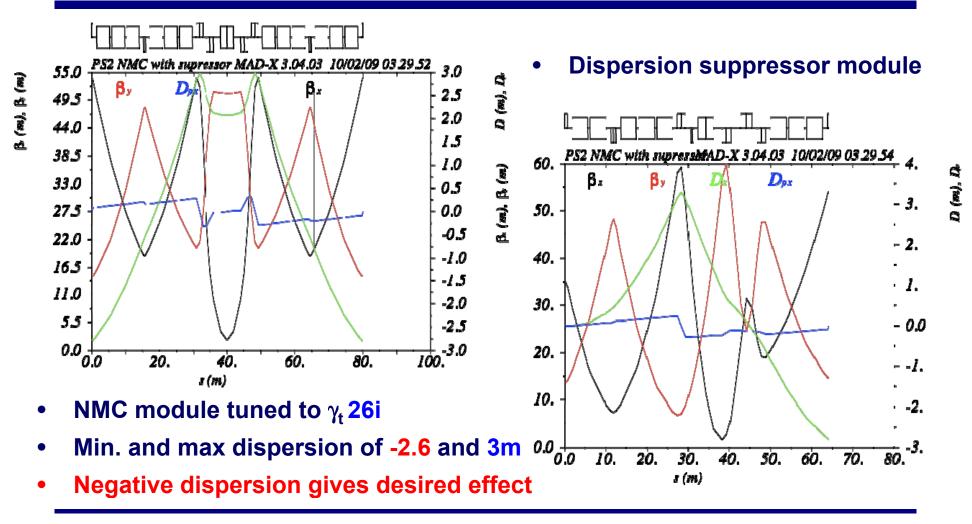
### **PS2** machine size


- Constraints from desired extraction energy ~50 GeV
  - Iron dominated dipoles B ≤ 1.8 T
    - PS2 will have roughly twice PS size i.e. R ~ 200 m and C ~ 1250 m.
- Constraints from filling SPS for physics
  - Complete filling of SPS circumference is desired for HI FT physics
  - Using an island multi-turn extraction scheme, similar to PS (5-turns)
    - Ideal PS2 length 1/5 SPS = 11/5 PS = 2.2 PS.
- Constraints from PS2-SPS synchronisation (rf cogging)
  - N x  $h_{PS2}$  = K x  $h_{SPS}$  is needed for correct synchronisation
    - (N/K) = 77/15 is best choice (5 PS2 slightly shorter than the SPS.)
    - h (200MHz SPS) = 4620, h (40MHz SPS) = 924, h (40MHz PS2) = 180
- Optimum length for PS2 from above arguments
  - PS2 = 15/77 SPS = 15/77 \* 11 PS = 15/7 PS.
    - 1346.4 m circumference, 214.3 m average radius

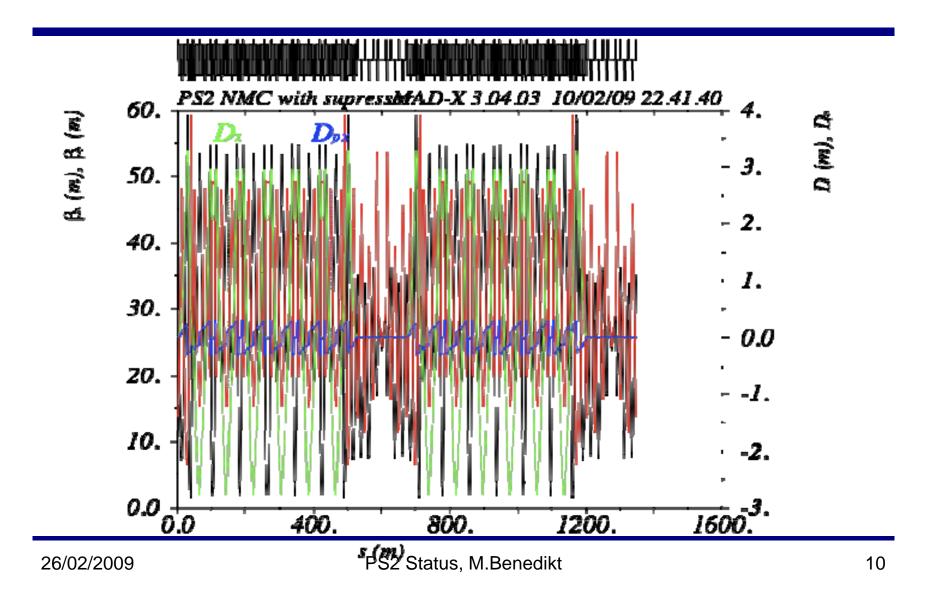
# **PS2** main parameters

| Parameter                 | unit | PS2                    | PS                     |
|---------------------------|------|------------------------|------------------------|
| Injection energy kinetic  | GeV  | 4.0                    | 1.4                    |
| Extraction energy kinetic | GeV  | ~ 50                   | 13/25                  |
| Circumference             | m    | 1346                   | 628                    |
| Max. intensity LHC (25ns) | ppb  | 4.0 x 10 <sup>11</sup> | 1.7 x 10 <sup>11</sup> |
| Max. intensity FT         | ррр  | 1.2 x 10 <sup>14</sup> | 3.3 x 10 <sup>13</sup> |
| Max. stored energy        | kJ   | 1000                   | 70                     |
| Linear ramp rate          | T/s  | 1.5                    | 2.2                    |
| Repetition time (50 GeV)  | S    | ~ 2.5                  | 1.2/2.4                |
| Max. effective beam power | kW   | 400                    | 60                     |

# Machine integration and shape


- Location of the machine at end of TT10 transfer line from PS to SPS at -50m under ground.
  - Injection from SPL (parallel to TT10) (with short transfer line)
  - Injection of ions from LEIR directly from TT10
  - Injection of protons from PS complex directly from TT10
    - If required for commissioning before SPL or during intermediate period.
  - Extraction towards the SPS via TT10 and existing SPS injection channel in point 1 with short transfer line
- Optimisation leads towards a racetrack shape of the machine
  - Two compact arcs and two long zero-dispersion straight sections
  - One long straight section for injection and extraction
    - One single extraction channel for three different extractions for three different destinations (SPS, Dump, Physics if required)
  - Second long straight section dedicated for RF




# **PS2** lattice design

- Lattice design to avoid the problem of transition crossing:
  - Low energy: acceleration goes into particle velocity gain
    - Particle with slightly positive momentum error has *shorter revolution time* even though moving at a larger average radius (i.e. on a longer orbit).
  - High energy: acceleration goes into particle mass gain, v≈c
    - Particle with positive momentum error has *longer revolution time*
  - At transition energy:
    - **Identical revolution time**  $\rightarrow$  no longitudinal stability  $\rightarrow$  beam losses
- Lattice with imaginary γ<sub>tr</sub>
  - Avoids transition crossing  $\rightarrow$  simpler operation, reduced losses.
  - More complicated lattice design and more magnet types/families than in e.g. regular FODO lattices
    - Orbit for particles with positive momentum error has to be SHORTER than nominal orbit! → Negative Momentum Compaction factor (NMC).

### **PS2 NMC module and dispersion suppressor**



### **PS2 NMC ring lattice**



### Long injection/extraction straight section



# **PS2 RF system**

#### • **RF system requirements:**

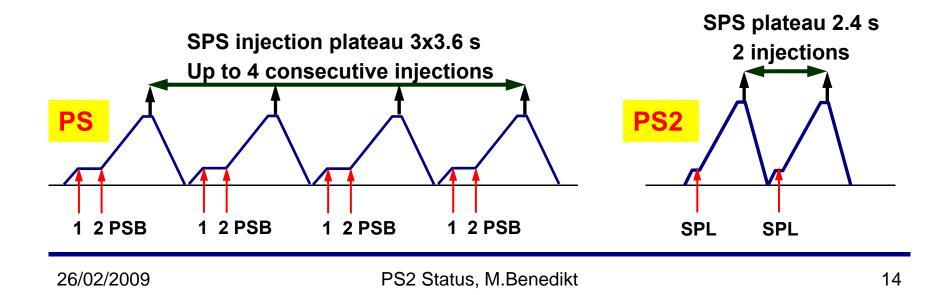
- Proton acceleration: revolution frequency ratio : 1,024 (3% tuning)
- Pb54+ ions revolution frequency ratio in PS&PS2 with injection directly from *upgraded LEIR* at 6.7 Tm: 2,1 (210% tuning range)
- All LHC bunch spacings and beams for SPS FT operation

#### • Preferred RF option

- Tuneable 40 MHz system (18 40 MHz)
  - Motivated by (LP) SPL 40 MHz chopping that will allow direct painting of any LHC bunch pattern up to 40 MHz already at injection
  - Minimizes rf gymnastics in PS2 and RF systems ( $\rightarrow$  impedance reduction)
- Feasibility of tuneable 40 MHz system (factor 2) to be demonstrated
  - R&D program for RF system development being launched.

# LHC beam from PS2 (i)

#### • Nominal bunch train at extraction


- h=180 (40 MHz) with bunch shortening to fit SPS 200 MHz.
- 168 buckets filled leaving a kicker gap of ~ 300 ns (50 GeV!)
  - Achieved by direct painting into PS2 40 MHz buckets using SPL chopping.
  - No strong impact on LHC filling scheme.
- Any other bunch train pattern down to 25 ns spacing
  - Straightforward with SPL 40 MHz chopping and 40 MHz system
    - (Would be limited to present schemes (75 ns, 1, 12, bunches etc...) with a 10 MHz RF system and "classical" splitting.)

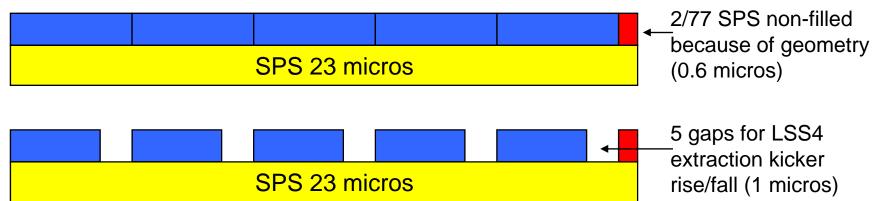
#### • Beam parameters

- Extraction energy: 50 GeV
- Maximum bunch intensity: 4E11 / protons per LHC bunch (25 ns)
- Bunch length rms: 1 ns (identical to PS)
- Transverse emittances norm. rms: 3 microm (identical to PS)

# LHC beam from PS2 (ii)

- Example 25 ns beam from SPL PS2:
  - PS2 will provide "twice ultimate" LHC bunches with 25 ns spacing
  - Bunch train for SPS twice as long as from PS
  - Only 2 injections (instead of 4) from PS to fill SPS for LHC
  - PS2 cycle length 2.4 s instead of 3.6 s for PS
    - Reduces SPS LHC cycle length by 8.4 of 21.6 s (3x3.6 1x2.4)




# **High-intensity physics beams from PS2**

- SPS fixed target type beam:
  - PS2 provides up to twice line density of PS high-intensity FT beam
  - Twice circumference gives up to 4 times more intensity in total
    - -1.2E14 per PS2 cycle (-1E14 with a longer kicker gap)
  - Five-turn extraction will fill SPS with single shot instead of two from PS
    - Twice more intensity in SPS via twice higher line density.
    - No injection flat bottom in the SPS
  - Clean bunch to bucket transfer PS2 40 MHz to SPS 200 MHz (cf. LHC)
    - ~7E11 protons per PS2 40 MHz bucket
    - Reduced by factor 5 to ~1.7E11 in one out of five SPS 200 MHz buckets
  - Transverse emittances: like upper limits of present CNGS beam
    - Norm. sigma emittances 15/8 mm mrad (h/v)
    - Adiabatic emittance damping at 50 GeV by  $(\beta\gamma)_{13}/(\beta\gamma)_{50} = 0.27$
    - Therefore ~1/2 present beamsize due to emittance.

# **CNGS-type upgrade beam from PS2**

• Filling the SPS with 5 turns from PS2

PS2 = 15/7PS = 15/77 SPS



- SPS filling is achieved in a single PS2 pulse
- Extraction kicker gap corr. to ~40 unfilled 40 MHz buckets.
  - ~140 filled 40 MHz buckets in PS2 (out of 180 buckets), kicker gap 1 micros.
  - 17.4 micros of SPS filled out of 23 micros.

# General planning 2009 - 2011

- 12/08 03/09 Finalize linear lattice and machine integration
  - Linear lattice design and machine geometry studies
  - Transfer lines from TT10, from SPL, to SPS
  - Injection and extraction studies
- 04/09 06/09 Iteration on element integration with technical groups and refinement of lattice studies
- 06/09 Freeze linear lattice, machine layout and integration
- 07/09 12/10 Conceptual design phase
  - Conceptual design of all technical systems
  - Refinement of beam dynamics
  - Civil engineering and technical infrastructure design
  - Cost estimates, resource estimates, implementation planning
- 01/11 05/11 Preparation of conceptual design study

# Conclusions

- PS2 main parameters are defined, based on LHC requirements
- Choices have been made for lattice design and RF concept
- Machine performance (beam power) will be ~ factor 10 above PS
- Question of a dedicated experimental area for PS2 needs to be addressed soon, for integration and machine optimization aspects
- I would like to thank all PS2 WG members and all colleagues that contribute to the study