WP6 status

Paolo Fessia

Summary

- Status of the WP6 and change of WP coordinator
- Lowβ quadrupole status
- Corrector status
- Cryostat status

Status and change of WP6 leader I

- Milestones
 - 6.1 " Component qualification" fulfilled
 - 6.2 "Basic magnet design" in preparation (delay 1 month)
- Deliverable
 - 6.1 "Basic Triplet Design" Main report written and published

Status and change of WP6 leader II

- Stephan Russenschuck is taking over the responsibility in order to guarantee adequate follow up despite 3-4 consolidation activities
- Due to the 3-4 incident 6 months delay have been matured up to now. It is very probable that with the partners we need to revise the plan for this work package according to the possible re-scheduling of project

Lowß quadrupole

CERN CIEMAT STFC

Enhanced insulation

Courtesy D. Richter P. Paolo Granieri

MQXC cross sections and iron yoke with heat exchanger(s)

Two possible solutions for heat exchanger proposed by the cryogenic team:

- 2 heat exchanger in parallel inner diameter 71 mm (1st eval. wall thickness 2.5 mm). Hole diameter 80 mm
- 2) 1 heat exchanger inner diameter 100 mm (1st eval. wall thickness 3.5 mm). Hole diameter 110 mm

Both are large holes in the iron that affect transfer function and field quality

We can consider 2 possible configurations

1) Holes along the 2 mid-planes (larger effect on the transfer function)

2) Holes at 45 $^{\circ}$

- We prefer solution with 1 heat exchanger on the vertical mid plane because of
- 1) Simpler interconnect
- 2) Standardization of cold masses respect 1 heat exchanger at 45 $^{\rm o}$

Courtesy F. Borgnolutti

Cables and Insulations Dimensions

• Cables dimensions

	w (mm)	thick in (mm)	thick out (mm)	rad (mm)	az (mm)
cable 01	15.100	1.736	2.064	0.160	0.135
cable 02	15.100	1.362	1.598	0.160	0.145

- Critical current
 - Cable 01 (inner layer): 14800 A @ 10T (4680 A/T)
 - Cable 02 (outer layer): 14650 A @ 9T (4050 A/T)
- Mid-plane and inter-layer thickness
 - Inter-layer thickness of 0.5mm
 - Mid-plane thickness
 - Layer 1 : 0.220 mm
 - Layer 2 : 0.245 mm

Coil Cross-Section

• Coil blocks features

Block N°	Nb Cond	r (mm)	φ (°)	γ (°)	cable type
1	12	60.00	0.2101	0.000	Cable 01
2	5	60.00	25.728	27.757	Cable 01
3	17	75.92	0.1849	0.000	Cable 02
4	2	75.92	23.501	22.762	Cable 02

• Angular position of the point 1 & 2

(mechanical requirement: angles < 41°)

- Point 1: ~35º
- Point 2: ~26º

Courtesy F. Borgnolutti

Effect of a slot in the iron on the magnetic field quality

- Odd multipoles are not affected
- Only even multipoles b₄, b₆, b₈ and b₁₀ are affected (multipole variation higher than 0.0001 unit)

	gap 1mm	gap 2mm	gap 3mm
Δb4	0.0340	0.0656	0.0978
Δ b6	-0.0174	-0.0362	-0.0536
Δ b8	0.0010	0.0020	0.0029
Δb10	-0.0002	-0.0004	-0.0006

NCS head design

Peak field in the head, 30 mm of coil more and a lot more of margin in the head

		straigh	nt part	head	B peak	ss field	% ss cur
		BS1	6.5	6.6	cb01		
	cable 01	BS2	7.3	7.4	7.4	9.6	77
no Iron		BS3	5.7	6.1	cb02		
Yoke	cable 02	BS4	6.1	6.4	6.4	8.4	75
		BS1	7.3	7.3	cb01		
	cable 01	BS2	8.1	8.1	8.1	9.9	82
unsat		BS3	6.4	6.7	cb02		
Yoke	cable 02	BS4	6.8	7.2	7.2	8.8	82
		BS1	7.1	7.2	cb01		
	cable 01	BS2	7.9	8.0	8.00	9.8	81
		BS3	6.6	6.6	cb02		
real Yoke	cable 02	BS4	6.6	7.0	7.03	8.7	81
			no	voke	unsaty	voke	real iron

	no yoke	unsat yoke	real iron
Lmag	104	117	116
b6	-2.9	-2.8	-2.8
b10	-4.0	-3.8	-3.6
b14	-0.3	-0.4	-0.3

Uncertainty: systematic coil length error 3 mm-> shift between heads->+/-0.9 Δ b6 Random: variation coil length 1 σ 2mm-> shift between heads->+/-0.6 Δ b6 This gives an uncertainty of +/- 0.03 for a straight part of 7000 mm and a random of 0.02. We will neglect it

Protection Study

		Nominal	Current	Half Curr	rent	
Setup		T peak	MIITs	T peak	MIITs	
Dump resistor 40 mOhm, 10 ms delay		117	33.6			
		157	33.3	78	23.0	
n	20ms extra delay	157	36.4	78	23.7	Hot spot in outer layer
	only half of the heaters	220	38.1	103	27.5	
4		180	35.2	86	24.5	
	20ms extra delay	217	38.0	104	27.6	
	only half of the heaters	221	43.4	102	30.8	
	+ Dump Resistor	118	29.4	50	15.2	Hot spot close to heater
	+ Dump Resistor, half of heaters	136	29.8		 Cour	Heater failure uncritical tesy N. Schwerg

Collar thickness scaling based on MQXB

Aperture radius [mm]	Collar thickness [mm]
55	35
60	39
65	42

FE analysis – radial displacement

Courtesy F. Regis

Studying options

Courtesy M. Segretti

Confirming 1st analysis and going beyond

Fig.6: Radial displacement of conductor blocs due to Lorentz forces.

Correctors

CERN CIEMAT STFC

Corrector Package: Status

MCBX Parameters

0 21.15 42.31 63.46 84.62105.77126.92148.08169.23190.3&11.5&32.6&53.85 275

Cable:

- •18 X ø0.48 mm strand
- •ø6 µm filaments
- •Cu/Sc = 1.75
- •Polyimide insulation (80 μm)
- •Strand stock for 13-14 off magnets

	Unit	
Integrated field	Tm	6
Nominal field	Т	4.2
Mag. length	m	1.42
Nominal current	А	2500
Stored energy	kJ	240
Self inductance	mH	77
Working point		<75%
Cable width/mid-height	mm	4.37 / 0.845
Total length	m	1.8
Aperture	mm	Ø140
Total mass	kg	~2700

Courtesy M. Karppinen

MQSX: Low current version

Field errors @ 40 mm	10 % of I _{nom}	I _{nom}
a ₆ (units)	0.007	-11.9
a ₁₀ (units)	-0.002	-0.210
a ₁₄ (units)	-0.076	-0.050

M. Karppinen AT/MCS

MQSX: High current version

10 % of I_{nom}

0 21.15 42.31 63.46 84.62105.77126.92 48.08 69.23 90.3 211.5 4232.6 253.85 275

Field errors @ 40 mm

a ₆ (units)	0.050	-0.639	
a ₁₀ (units)	0.004	-0.003	
a ₁₄ (units)	-0.109	-0.109	

Courtesy M. Karppinen

nom ~ ~ ~ ~

Cryostat

CNRS CERN support

INNER TRIPLET QUADRUPOLE CRYOSTAT First draft drawing from CNRS