

WP5 – Radiation Protection

Progress Report 2009

Th. Otto on behalf of WP5 collaborators

The aim of WP5 in SLHC-PP

- The preparatory phase project cannot deal comprehensively with all radiation protection issues in SLHC, its experiments and its injectors
- We stride to identify "bottlenecks" in the sense of radiation protection
- This allows to
 - Think about original solutions already in the conceptual stage
 - Prioritise resources in the technical design phase

Steve Myers: "Unsociable sabotage, bottles were empty!!"

Two areas of interest:

- The "super"-experiments after CMS and ATLAS:
 - 10-fold luminosity means 10-fold prompt radiation levels in the experiments
 - Can the inner detectors be operated ?
 - Can they be maintained ?
- The SLHC and its new injector chain:
 - Beam loss by design: injection, collimation
 - Change of the inner triplets: Phase 1 (L=2 10³⁴) and Phase 2 (L=10³⁵)

Strategy for the "super"-experiments

- Tool for predicting radiation effects in SLHCexperiments: Monte-Carlo simulations (mostly with Fluka-code)
 - D: Absorbed doses
 - φ:Secondary particle fluence rates
 - A: Material activation
 - H*(10): Prompt and residual ambient dose rates
- "Trust is good, control is better"
 - Validate the simulations with measurements at LHC
 - Extrapolate to SLHC

Status of simulations

- CMS:
 - MC-model of CMS (Fluka) has been updated to "as-built" status by CERN-CMS and CERN-SC-RP
- ATLAS:
 - Previous MC model (G-Calor) no longer useable
 - ATLAS-model in Fluka under preparation by Sheffield and CERN
- Which simulations need to be simulated ?
 - The obvious: p-p-collisions at point-zero
 - The background: beam-halo, secondaries from collimators

Example: ATLAS Model

Developed by several authors with version-control-software

Foresees alternative "branches", for example for SLHC-detector upgrades

From Ludovic Nicolas, Sheffield, and Zuzana Zajacova, CERN

A dense network of detectors

Subsystem	Experiment	Characteri stic	Observable	Institution
TLD + Alanine (future)	CMS	Passive	Absorbed dose	CERN-RP, PSI, DESY
Activation foils	CMS & ATLAS	Passive	Activation	CERN-RP
МРХ	ATLAS (15) & CMS (5)	On-line	Particle fluence	Prague
CERN-RADMON	18 @ CMS	On-line	"Dose", n +had fluence,	CERN-EN
ATLAS-RADMON	ATLAS	On-line	"Dose", (ionizing, NIEL, neutron)	Ljubljana, CERN- ATLAS
BLM & BCM Diamond Detectors	CMS & ATLAS	On-line	Background and collision rate	
BSC Scintillator	CMS	On-line	Background rate	
Arizona Monitors	ATLAS (5)	On-line	n/γ fluence	Arizona
RAMSES	ATLAS & CMS	On-line	Ambient dose equivalent	CERN-RP

Monitor locations in CMS

9

MPX-locations in ATLAS

CERN

First cross-collaboration synergies

- Activation detectors
 - copper and stainless steel foils
 - In ATLAS and in CMS
 - Complemented by Alanin absorbed dose detectors in CMS. ATLAS interested.
- Thermoluminescense detectors (TLD)
 - From Krakov via DESY and from PSI in CMS
 - Both collaborations interested in moderated TLD-n/γmonitors in cave and in UX (ATLAS)
 - Use of track-etch neutron detectors to be explored

Interpretation of detector readings

- Complex radiation fields in CMS and ATLAS: multiparticle and broad energy spectrum
- Calibration of some monitor systems in reference radiation fields still in progress
- Both experiments set up user interfaces for accessing data of radiation monitors and correlation with accelerator parameters
- The various observables must be correlated to quantities of interest to radiation protection:
 \$\overline{\phi}\$, \$\mathcal{A}\$, \$\mathcal{H}^*(10)\$

Overall status

- Numerous different detector systems in and around detectors
- Waiting for beam in LHC
- Active detectors will deliver sufficient data once collisions take place
- Passive detectors can only be changed and evaluated at the end of 2010
- Interpretation still requires some effort.

Strategy for SLHC and Injectors

- Identify likely beam loss points in close collaboration with accelerator designers
- Evaluate consequences for radiation protection:
 - A: activation of accelerator components, building structures, ground (water) and air
 - H*(10): Prompt and residual ambient dose rates
- Use approximative models
- This approach delivers sufficient information to guide major design decisions before the technical design phase

Critical areas so far:

- LINAC-4 PSB: H⁻-injection
- LPSPL PS2: H⁻-injection, internal dumps, collimators
- SLHC: inner triplets (for Phase 1, L=2 10³⁴)
- Beam cleaning in SLHC: collimator regions sector 3 & 7

Example 1: Inner Triplet

From Stefan Roesler and Markus Fuerstner, CERN

CERN

Where do we go from here ?

• First Milestone of WP5:

- A compilation of the "critical areas" for radiation protection in the injectors, SLHC, and experiments
- Due March 2009
- The WP5-roadmap for further progress
- Detector-Compendium:
 - Compile an overview of all radiation detector types in ATLAS and CMS
 - Foster cooperation between the two experiments in the area of radiation detectors (First step: ATLAS MPX in CMS)

What do we hope to report in one year from today ?

- MC-models of CMS and ATLAS up & running
- Data from active detectors abundant and on the way to be understood
- Input to conceptual design of new injectors delivered and considered for design optimisation
- An optimised plan on how to change the inner triplets during the Phase 1 upgrade
- Passive detector results not before end 2010
- (Probably) no news on SLHC-collimators or on Phase 2 inner triplets

Talent required !

- In spite of the challenging program, SLHC-WP5 @ CERN-RP is experiencing difficulties in recruiting young researchers !
- Post-graduates interested in a CERN-Fellowship for work on accelerator-related "bottlenecks" should contact Stefan Roesler or myself