Connecting The Dots 2016

°  22-24 February 2016
- HEPHY Vienna

This is a workshop on track reconstruction and other problems in pattern recognition in sparsely
sampled data. The workshop is intended to be inclusive across other disciplines wherever similar
problems arise. The main focus will be on pattern recognition and machine learning problems that

arise e.g. in the reconstruction of particle tracks or jets in high energy physics experiments. Both
hardware and software aspects will be addressed.



Scientific Programme

Algorithms and theoretical analysis

— Mathematical evaluation of pattern recognition problems, fitting,
effect of noise, treatment of multiple scattering, theoretical limits, etc.

Parallel and/or discrete pattern recognition

— Includes Hough transform approaches, look-up tables, associative
memory.

Neural networks, machine learning, and neuromorphic
approaches

— Includes both software/firmware implementations and exploration of
neuromorphic hardware

Applications and performance evaluation

— Examples of implemented pattern recognition problems and solutions
with emphasis on new challenges and limits of scaling existing
approaches.



Participation &
content

* 74 participants

« Most of the talks’ content also in previous
CHEP, ACAT, Vertex, VCI

* More intimate venue and relaxed atmosphere
allowed fruitful discussion

 Today will not cover
— Machine Learning Challenge
— Common Tracking Software Forum



Student Session

Eta correction for silicon sensors

Seminarraum 1,2,3, HEPHY Vienna

Tracking in ASACUSA

Seminarraum 1,2,3, HEPHY Vienna

Track reconstruction in the InGrid TPC for ILC

Seminarraum 1,2,3, HEPHY Vienna

Expected performance of the ATLAS Inner Tracker

Seminarraum 1,2,3, HEPHY Vienna

Machine learning assisted track finding in the Belle II SVD

Seminarraum 1,2,3, HEPHY Vienna

Tracking in MAPT

Seminarraum 1,2,3, HEPHY Vienna

Manfred VALENTAN B
16:20 - 16:35
Bernadette KOLBINGER )
16:35 - 16:50

Amir SHIRAZI B
16:50 - 17:05

Simon VIEL B

17:05 - 17:20

Thomas MADLENER B
17:20 - 17:35

Michael MILDE B

17:35-17:50
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Robot and Computer Vision
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Vision for Robotics & Automation

m Vision: ,WWe make robots see.”
® Form and function of objects

“ Robot navigation and grasping
“ Object function, shape and pose estimation

“ Learning novel objekts and object classes

B |[ndustrial and service robots




HOBBIT — The Mutual Care Robot
Fall Prevention and Acceptance

Demographic challenge
Increasing age, highest risk: fall
50% hospital visit persons over 65
175ME€ operations; 6% health costs

Robot for fall prevention/detection
Clean up floor, free paths at home
Socially connected, activity, entertainment

49 test persons in A, S, GR |
70-88 Jahre, living alone, moderate impairments \
Very high acceptance 87% \
Rent for their home 77%

3-weeks Study in flats of older persons

[Haus der Barmherzigkeit]



Robot and Computer Vision

Markus Vincze

Conclusion

Model-based methods for finding geometric
features

ldea: generate hypotheses and then check in
data (hypothesise and verify)

Can be applied if there are only a few
percent of ,good" data

Information over type of data may
significantly accelerate search




Big-Data in Astronomy and Astrophysics
Extracting Meaning from Big-Data

Jason McEwen
Www.jasonmcewen.org
@jasonmcewen

Mullard Space Science Laboratory (MSSL)
University College London (UCL)
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Jason McEwen Big-Data in Astronomy and Astrophysics



L . _ What is big-data in astronomy and astrophysics?
What is big-data in astronomy and astrophysics?

E Euclid EI
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LOFAR

e Big machines
> experiments, physical hardware, computing

Big theory and simulations for forward modelling

» cosmological evolution of linear perturbations, N-body simulations,
non-linear scales (astrophysics -+ cosmology), radiative transfer, semi-numerical methods

> Big parameter space

Big algorithms

LSST

Big collaborations

Big engagement
> e.g. outreach, industry

@ -
MWA

Wide and deep data and observations

Challenges of big-data

Analysis challenges (Fan et al. 2014):
B Heterogeneity, e.g. sub-populations, different data sources, tension between data
A Error accumulation, e.g. high-dimensional parameter spaces, bias
E Spurious correlations, e.g. correlation vs causation, data dredging

Incident endogeneity, e.g. chance correlation between signal of interest and error



Big-Data lllustrative Analyses ncluding Remarks Planck A Big-Data lllustrative Analyses Concluding Remarks Planck

Observations of the cosmic microwave background (CMB) Bianchi VI, cosmologies
Simulations

7,

‘(3

- y
[ 5
Figure: Simulated CMB contributions in Bianchi VII, cosmologies for varying parameters.
Credit: WMAP 5 Ha
Big-Data in Astronomy and Astrophysics Big-Data in Astronomy and Astrophysics
Big-Data lllustrative Analyses Concluding Remarks Planck ¢
Big-Data lllustrative Analyses Co ding Remark Planck
Bianchi VII, cosmologies Bianchi VI, cosmologies
Best-fit Bianchi component (flat-decoupled-Bianchi model) Planck results

BUT parameter estimates are not consistent with concordance cosmology.

e Follow up with Planck 2015 polarisation data, rules our flat-Bianchi-decoupled model.

¢ Find no evidence for Bianchi VII; cosmologies and constrain vorticity to
(Planck Collaboration XVIII 2015):

(w/H)o < 7.6 x 10710

4 95% confidence level

-0 I I +50.0

Figure: Best-fit template of flat-decoupled-Bianchi VI, model.




Concluding remarks

¢ Increasingly inter-disciplinary, drawing on statistics, applied mathematics, computer
science, information engineering, ...

¢ Increasingly intra-disciplinary (e.g. Planck, Euclid, LSST, SKA, ...)

e Many methodological synergies

Concluding remarks

How can we exploit synergies?

Open (unencumbered) data and open code

A Develop best practices (e.g. code development, general codes, reproducible/replicable
research, blinded analysis)

A Explore HPC synergies (e.g. Dirac, Archer, Hartree, Google, Amazon, ...)
B Go beyond individual techniques to understand properties of classes of approach
A Develop common language

@ Promote inter- and intra-disciplinary collaboration and communication,
e.g. Alan Turing Institute (ATI), workshops (e.g. BASP conference), Hackathons, . ..



The “Retina” Project

First prototype of an “Artificial
Retina” Processor
for Track Reconstruction

Riccardo Cenci
SCUOLA NORMALE SUPERIORE &
INEN - P1sA, ITALY

On bebalf of INFN-Retina Collaboration

* Three-year R&D program started in 2015 and
supported by INFN-CNS5 (Technological

Research Division)
* Goals:

* Demonstrate the feasibility, at a reasonable
cost, of a system based on the “artificial retina”

algorithm using FPGA devices
* Evaluate its performance in HL-LHC

environment
* Our plan is to build two prototypes:

* Prototype 1, to test the logic functionality of the
full system when applied to a simple tracker

* Prototype 2, to test the speed/latency for the

basic components when implemented on modern

high-speed devices

Riccardo Cenci 8

¢ INFN-Pisa: F. Bedeschi,
F. Spinella, J. Waslh

* Scuola Normale
Superiore and INFN-
Pisa: R. Cency, P.
Marino, M. J. Morello

¢ Universita degli
Studi and INFN, Pisa:
D. Ninci, A. Piucci, G.
Punzi, S. Stracka

* Fermilab: L. Ristori

Connecting The Dots, Vienna, Feb 22, 2016



Pattern recognition

* The fastest approach to tracking
implemented in a real experiment is
direct matching to a bank of stored

templates: Associative Memory
(SVT@CDF)

* No combinatorics, comparison in parallel,
but patterns are still sequential in AM cell

» Same approach will be used for Atlas L2
trigger (FTK) and CMS Phase-2

* But requirements for L0 at HL-LHC

are not matched by a factor ~80, is it
impossible then?

Name Technology Experiment Year | EventRate Clock | Cycles/event Latency

XFT FPGA CDF-LO | 2000 2.5 MHz 200 MHz 80 <4us

SVT AM CDF-L2 | 2000 30 kHz 40 MHz ~1600 <20ps

FTK AM ATLAS-L2 2015 100 kHz ~200 MHz 0 O(10ps)
? ? <LHC>-LO0 | ~2020 40 MHz ~1GHz few ps

Riccardo Cenci A Connecting The Dots, Berkeley, Feb 4, 2015




Inspiration from human brain: the vision

* Early stages of vision (edge
detection) has a lot in common
with track reconstruction:

* Lots of complex data/combinatorics
* Little time available
* Pressure to make accurate decisions

* Strongly constrained computing resources

* Analog responses from retinas is delivered only to limited
subset of neurons (=patterns)

* First stage of visual cortex (V1) is able to produce a sketch 1) . .
in less than 100 ms, working at a frequency of 30-40 Hz ke traCkmg alg Orlthm (1)

Connecting The Dots, Berkeley, Feb 4, 2015 ,uciano RiStOI’i [NH\‘ A453 (2()()()) 425-429] inspired to
visual apparatus ot mammals (from here the name Artificial Retina). Similarities
with:

* Hough transform until 2D, but computationally simpler with more dimensions

Riccardo Cenct 6

* Associative memories for pattern matching, but analog responses using cells
interpolation, implying similar or better resolution with lower number of stored patterns

AV

* Configuration phase (common PC): o
1. Discretize space of track parameters | = 150>
(cells) "“-—-’-‘__ < .

2. Mapping 1: generate track S |
intersections with detector planes 4L R
(receptors) and connect them to cells "B 1>

_H

3. Mapping 2: assuming contiguous cells --[7]_]-
corresponding to slightly different !
tracks, we connect cluster of cells to Detector layers

areas of detector readout Toatla u,v track parameters

u
3>




Conclusions

* Computing and storage available for future experiments at HL-LHC will not
be able to cope with the increase of data rate, so more processing will have to
be performed “online” to reduce event rate and size

* Current methods may not scale well. Alternative advanced solutions should be
explored, like the “Artificial Retina” algorithm, that exploits higher degrees

of parallelization and provides analog response

* The “Retina Project” aims to demonstrate the feasibility (at reasonable cost)
of a real system based on this algorithm able to reconstruct tracks at rates
expected for LHC Run3: we are completing a functional prototype and
assembling another one for speed test

* Further developments and synergies with fast and smart tracking detector
may lead to future experiments with detector-embedded data reconstruction

For more references see here: link

Riccardo Cenci 26 Connecting The Dots, Vienna, Feb 22, 2016



Exploring the beundari€s:of [ow-
energy, feal-time tracking with,
(+".“Nedromorphic Computing »
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K:E. Bouehard;P. Calafiura, R Carney, D. Clarky D. D"Onofrio, Me
»“Garcia-Sciveres, J.A Livezey, C.E. Tull_° ;
EPBNL g v
Our Goals

Understand role of neuromorphic
computing in

(source UCSF)

 Embedded data processing
— Portable sensors, difficult environments

* Real-time, massively data-parallel
processing
— HL-LHC TDAQ

* On board HPC co-processing
— power-optimized alternative to FPGAs, GPUs
for neural network algorithms

S "
Office of Science 2




What runs on Neuromorphic Hardware?
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Interfaces “Mind-reading with artificial brains”
TS =SS Dynamics

_'ba’ -~
. !g,a’ -

Feature Extraction Classification Kalman Filter




ML & Tracking: a Cartoon
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Kalman Filter Tracking
on Parallel Architectures

Connecting The Dots 2016: February 22, 2016

UC San Diego

G. Ceratil, P. Elmer3, S. Krutelyov!, S. Lantz?, M. Lefebvre?,
K. McDermott?, D. Riley?, M. Tadel!, P. Wittich? F. Wiirthwein!, A. Yagil!

{5 |} Cornell University PRINCETON
4 ' UNIVERSITY




Matriplex

* Matrix operations of KF ideal for vectorized processing;:
however, requires synchronization of operations

« Arrange data in such a way that it can loaded into the vector
units of Xeon and Xeon Phi with Matriplex

— Fill vector units with the same matrix element from different
matrices: n matrices working in synch on same operation

R1 - M'(1.1) M2 |. M'(1.N) M'(2.1) ) M'(NN) | ™M M™'(1.,2)

R2 - MA(1,1) Mi(1,2) M(1LN) M4(2.1) ’ M*(N.N) M"*4(1,1) M™(1,2) M (IN) | M™(2.1) . M**¥(N,N)

Rn - M*(1,1) M*(1,2) . M*(1,N) M*21) M*(N,N) M*(1,1)
vector
unit Matrix size NxN, vector unit size n

22 February 2016 K. McDermott - Connecting The Dots 10




Fitting time results [axiv: 14098213

MIC - vectorized, single threaded MIC - parallelized, vector size = 16
2 40_ —e— MIC Measured E‘ —e— MIC 1 thread/core
= F = @~ MIC 2 threads/core
& 35 ——— MIC Ideal Scaling g | :
_g 30:_ @ ——— MIC Ideal Scaling
- S 1k
s F S
S 250 s |
20F- .
15F 107
10F-
oo’_llle,Lllllll‘Llilkl‘Llll,Lllllli‘, 10_2“.1111_,11‘l,1‘,,1.‘,1
2 - 6 8 10 12 14 16 18 0 20 40 60 80 100 120

Vector Size Number of threads

« Significant speed-up is observed for both vectorization and parallelization
— Similar features on both Xeon and Xeon Phi
— Vector utilization is roughly 50%
— DParallelization near ideal for 1 thread / core, overhead observed in 2 threads/ core
« Loss of vectorization and overhead related to L1 cache issues

Demonstration of feasibility on fitting, move to track building

K. McDermott - Connecting The Dots K

22 February 2016




Handling multiple track
candidates: first approach

candidates ready
for next layer | sort temp vector, and

clean copies > N

all candidates in layer
for all seeds processed

go to next hit
\ copy candidate
fail

h——————

update with hit

r
1
1
I
I
1
1
1
I
I
I
I
I
I
1
1
1
I
I
+ = : , /7 push into temp vector
I
: > test x? <cut [© P .
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L

T N.B. When processing tracks
in parallel with Matriplex,
copy + update forces other
T processes to wait!

propagate candidate to layer

FailPasPassPass

2B X2

loop over hits in window

22 February 2016 K. McDermott - Connecting The Dots



Optimized handling of multiple
candidates: “Clone Engine”

candidates still
ne'gd update sort bookkeep list,

--------- copy only the best N
A

I

| all candidates in layer
| for all seeds processed
I

1

go to next hit r\
faiIT

add entry in bookkeep list

—> test x2 < cut [~ Pass
T N.B. Clone Engine approach

should (and does) match

physics performance of

T previous approach!

propagate candidate to layer

|

update candidate with hit
from previous step

loop over hits in window

r----------------------

22 February 2016 K. McDermott - Connecting The Dots



Building: Xeon Phi Vectorization

Vectorization benchmark on Xeon Phi nThreads =1 Vectorization speedup on Xeon Phi
= 701 g 16_
N - . 12_ :
2 S0~ -+ Clone Engine : —+— Clone Engine
o -
3 I 10
= JPY)| N
S : n
- 8
P —1 -
& 30F- :
20— 4:
0;.]...I...I...I...l...I...I...Il 0""‘"""""""'l“j
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Vector Width Vector Width

* Mostly same features seen on Xeon Phi

* Notable exception is VW=2, most likely
overhead in beginning to fill vector units

* Once all registers are filled, achieve speedup of
about 2x for Best Hit and Clone Engine

22 February 2016

K. McDermott - Connecting The Dots 20




Building: Xeon Phi Parallelization

Parallelization benchmark on Xeon Phi nVU =16 Parallelization speedup on Xeon Phi
= 100: /

2 §
g -
§ —+— Clone Engine 80F
> -
g 70
g C
; 10 60
% =
- E
E =
- 40:
30F
20F
1 =

PP PPN PP EPRPIP PP PP PP EPUPIP PR I P N AP I I IR PPN IR IPIPI PP IR B I

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Number of Threads Number of Threads

e Features at nThreads = 63, 126: overhead from
2nd thread per physical core, hyper-threading,

respectively

* Eventually recover speedup from bumps: total
of 30x speedup on top of vectorization

22 February 2016 K. McDermott - Connecting The Dots



4D Cellular Automaton Track Finder
in the CBM Experiment

. Bundesminsterum  HESSEN -
van Kisel |52 ZE HIC kR corme 1, (53 ey 9 g g B
—

for the CBM Collaboration AL L er

2 internationsl Center  FRANKFURT AM MA

Reconstruction Challenge in CBM at FAIR/GSI

* Future fixed-target heavy-ion experiment

« 107 Au+Au collisions/sec

* ~ 1000 charged particles/collision

« Non-homogeneous magnetic field

* Double-sided strip detectors (85% fake space-points)

Full event reconstruction will be done
on-line at the First-Level Event Selection (FLES) and
off-line using the same FLES reconstruction package.

Cellular Automaton (CA) Track Finder
Kalman Filter (KF) Track Fitter
KF short-lived Particle Finder

All reconstruction algorithms are vectorized and parallelized.




Kalman Filter (KF) Track Fit Library

Kalman Filter Methods ( Conventional KF DP vs. SP ) [ Conventional KF RK4 vs. Analytical
. - e 480 ;

Kalman Filter Tools: : ;
« KF Track Fitter i"o T s ’ - d"'ﬁ i-m T RK Ersse0 » | vﬂ"*ﬁ
» KF Track Smoother 4 SP_X5680 o AN X5680 5
* Deterministic Annealing Filter ® DP_X5680 ' v ' ® RK_X5680 ;
W SP_XS550 W AN_XS550 )

+ DP_X5550 + RK_X5550 ;

Kalman FilterABproaches:
» Conventional DP KF

» Conventional SP KF

» Square-Root SP KF

» UD-Filter SP

» Gaussian Sum Filter

8 8 & 2 8

Track Propagation:
* Runge-Kutta

—
=

» Analytic Formula
Number of logical cores
Implementations ( Square-Root KF ) (
Vectorization (SIMD): 2% . ; 2%
* Header Files 2ok v E7-4860_ITBB : I PN
« Vc Vector Classes ETE r ETAs0ArhB -
« ArBB Array Building Blocks cof A XS0 ITRB ‘ 60
* OpenCL O AR
- m X5550_ITBB : _ : : ”
Parallelization (many-cores): ‘ -ArBB .
» Open MP 40} S 40
- ITBB : i
* ArBB e ; 30
* OpenCL zoé : 20f
Precision: % : :
» single precision SP '°i ; 1o‘
* double precision DP ol N off
70 80
Number of logical cores

Comp. Phys. Comm. 178 (2008) 374-383

Strong many-core scalability of the Kalman filter library with L. Kulakov, H. Pabst* and M. Zyzak




Cellular Automaton (CA) Track Finder
| 0. Hits

Detector layers T

. T ——
0. Hits (CBM) ) i o L & Y &
,  Hits B
o 9 —
s @ ® *
| I 1. Segments
Cellular Automaton:
) ' ! 1. Build short track segments.
1000 Hits ' 2. Connect according to the track model,
2 Counters estimate a possible position on a track.
3. Tree structures appear,
3 4 collect segments into track candidates.
4. Select the best track candidates.
3. Track Candidates
4. Tracks (CBM)
Cellular Automaton:

* local w.r.t. data

* intrinsically parallel 4. Tracks

* extremely simple ‘———-—-""\._ o—-=

* very fast

Q
Perfect for many-core CPU/GPU !
1000 Tracks

Useful for complicated event topologies with large combinatorics and for parallel hardware




Time-based (4D) Track Reconstruction with CA Track Finder
. v/ N\ A ,{A;‘\\ AN N\
'@ N XSO 9\
e B T » The beam in the CBM will have no bunch structure, but continuous.
Time Siice : Time Sice - Time Siice * Measurements in this case will be 4D (x, y, z, ).
" « Significant overlapping of events in the detector system.
| T" ‘ | ‘ ‘ ‘ ’ | ‘ l + Reconstruction of time slices rather than events is needed.
Time Sikce ‘I L—,,w., 4’“— =" Total CA time = 84 ms
Speed-up factor due to parallelization within the time-slice |
2 12
= L
Stage of the algorithm % Of:tOta.l -g B ®=  CA Track Finder +
execution time e L Initialisation .
e g e 20— e Triplets Construction _._++:’:
Initialisation 8 — -
. . - ®  Tracks Construction - - e 4
Triplets construction 64 = s Final Stage B S .
. g 2 i —0—+ ¥y o
Tracks construction 15 u .
. . - . a a
Final cleaning 13 B P A
6— —0——4:: eSS S ——————
~ = |
- = S
Efficiency, % 3D 3+1D 4D B .
All tracks 838 804  83.0 a— g
— %= v
Primary high-p 96.1 94.3 92.8 - . —A—
Primary low-p 79.8 76.2 83.1 ) B ——a |
Secondary high-p 76.6 65.1 73.2 - . A
| | g
Secondary low-p 409 34.9 36.8 B * ‘
Clone level 0.4 2.5 1.7 0 | 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 |
0 5 10 15 20
Ghost level 0.1 8.2 0.3 | N Logical Cores
Time/event/core, ms 8.2 31.5 8.5 Total CA time = 849 ms 100 mbias events in a time-slice
4D event building is scalable with the speed-up factor of 10.1; 3D reconstruction time 8.2 ms/event is recovered in 4D case

Ivan Kisel, Uni-Frankfut, FAS . CTD2016, Vienna, 22.02.2016 12/14



The Neuro-Z-Vertex Trigger of
the Belle Il Experiment

Sebastian Skambraks

Technische Universitat Miinchen

@) - srernyIKITG

Neuro Team
F. Abudinen (LMU), Y. Chen (TUM), M. Feindt (KIT), R. Frihwirth (HEPHY), M. Heck (KIT), C. Kiesling (MPI),
A. Knoll (TUM), S. Neuhaus (TUM), S. Paul (TUM), J. Schieck (HEPHY), S. Skambraks (TUM)

m

Benefits of a z-Vertex Trigger

40%

20%

1
6‘904% 0
Z
(4

e rescue low multiplicity
events

e without z trigger: 3 tracks required

(> 1 in each hemisphere)
e with z trigger: only 2 tracks e potential efficiency

required increase by factor 3.9

The Neuro-Z-Vertex Trigger of the Belle Il Experiment (Sebastian Skambraks)

Belle Il Background

Beam Background Tracks NeuroTrigger Goals

e suppress machine
background
e reject tracks from z # 0Ocm

e single track z-vertex
+ resolution < 2cm

e time window < 1yps

e increase with Luminosity
e tracks from the beamline Em,:_
with displaced z vertices g
. 3 800
® main processes: 3 [
- Touschek Effect -
- Radiative Bhabha 00l
- Beam Gas
= need z vertex reconstruction =
at 1% trigger level 0555
The Neuro-Z-Vertex Trigger of the Belle Il Experiment (Sebastian Skambraks) 4/ 20
D
| - Z-
NeuroTrigger - Multi Layer Perceptron
input hidden output
layer layer layer

Properties

e supervised machine learning
e function approximation
e short deterministic runtime

e one neuron:
y= tanh(z w; - X; + wp)
i

input one TS Hit per SL per track
(positions: ©,,s
and drift times: t)

output z estimate

The Neuro-Z-Vertex Trigger of the Belle Il Experiment (Sebastian Skambraks) 8/ 20




Tracking in the Belle Il Drift Chamber

Vienna - Connecting the Dots 2016

alf of the Belle Il collaboration | DESY | 2016-02-22 | Page 2/23

Oliver Frost on behalf of the Belle I collaboration The Central Drift Chamber General algorithms Tracking for Belle Il Drift Chamber
D El y (DESY) L
2016-02-22
)
Hough searches ge.si
10 _
Hough algorithm = Characteristics
g 5
Discretised maximum likelihood optimisation over % d>0 > Templated C++ for all aspects
g0 - = Dynamically expanding tree (Quadtree, 2°n-Tree) managing node memory
Linl{xh =3 / dn 6(d(n, x)) s > Weighting of the hits in the tree nodes
' < <o > Abitrary dimensional e.g.
¥hgre I:, is thg gistanoe measure of track to hit. M ., s e s e > Base line xy model: 0 and p
b2 E L S LT 0 angle = Cosmics base line xy model: do, 6, and p

= grid search - = Experimental z inclusion: 6, p and tan A

= Fast Hough bisecting each dimension =~ Base line sz : tan )\ and 2,

= Experimental full helix dy, 6, p, tan A an
over small volumes dn of the parameter space evaluating wperimental full helix db, 6, p, tan A and zo

only the signs of d on the edges. = Flexible division schemes
= Division factors other than 2 individually for each dimension. 3 or 4 seem feasable.
Refinements =~ Overlapping division boundaries
= Pre-Sectorisation: Starting with finer binning in the top node to step to specific region of the detector
= Weighting of hits versus tracks e.g. on distance d or = Alinear divisions (e.g. to allow finer binning in low curvature regions)
prior distributions = Allow abitrary division shapes (circles, spheres, remember that the ordinary hough peaks have butterfly
> Priorisation of search areas shape)
= Overlapping volumes 5 : ;
ERUORO TR e RN IEO P Ut > Single best and all nodes higher than threshold weight

Oliver Frost on behalf of the Belle Il collaboration | DESY | 2016-02-22 | Page 4/23
The Central Drift Chamber General algorithms Tracking for Belle Il Drift Chamber
L]



GENFIT2 - Kalman and deterministic annealing filter fitting

GENFIT2 package

= Proper Kalman fit including

- material effects
= magnetic field inhomogenities
= time of flight corrections

- Deterministic annealing mode for
= hit cleaning
= ambiguity resolving

- Specialisable for all kinds of detectors

=~ wire chambers

- planar detectors
> ...

= Seeding needed by fast fits
= https://github.com/TobiSchluter/genfit

point of :lmesl residual
approac
to line

measured
surface of
constant drift time

virtual detector plane

point of closest
approach o
point

measured
space point

virtual detector plane

Oliver Frost on behalf of the Belle Il collaboration | DESY | 2016-02-22 | Page 14 /23

The Central Drift Chamber General algorithms
m

Tracking for Belle Il Drift Chamber




Belle 1l VXD

20 vedg | - -
L Rectangular (122.8 x 57.6 mm®, 240 / 75 ym pitch)
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Angular acceptance: . g0 MM
17" < 0 < 150°

Vertex Detector (VXD) consists of:

- 2 layers of DEPFET Pixels (PXD),
@ radii: 1.4, 2.2 cm,
# of pixels ~ 8,000,000,
thickness of sensitive areas: 75 pm

- 4 layers of double sided silicon strip
(DSSD) sensors (SVD),
@ radii: 3.9, 8, 11.5, 13.5cm,
# of channels: ~ 226,000,
low material budget:
X/X0: ~ 0.55% | Layer

SVD: 4 layers
PXD: 2 layers 172 sensors
(innermost hidden) total

region 40 sensors total




Planned structure for the VXDTF (event-part)

Orange box: »

Responsibility of detector groups SegmentNetwork

SpacePointTrackCand

SpacePoint
PXD_ - Creator o
Clusterizer A PXD
| Segment-
T .| "4 Network- _‘
syp | SpacePoint /| Producer
Clusterizer —P Creator CKF (genFi)
A sw

!l .
il \
|} \
|" !

Clusters of detector type SpacePoint

light blue box: module
yellow box: remark
red box: TF steps
text w/o box: interface-container -

Independent from
_ Detector type

» CA: Cellular Automaton
 KF: Kalman Filter

« CKF: Combinatorial KF .
« DAF: Deterministic Annealing Filter

KF (genFit)

CircleFit
SPTC-

= Network- =%

DAF (genFit) Producer
HelixFit
LineFit SPTCNetwork

Random

Share pruncuple of
_SectorMap & Segments

Hopfield type

~ Violet box:

'Responsibility of tracking group

Hopfield

- Referee

/

| repeat with
dlfferent settings

Greedy

N

« Hopfield: a neural network of

SPTC: SpacePointTrackCandidate




Online and offline
Pattern Recognition
in
PANDA

Gianluigi Boca
Universita’ di Pavia and INFN, Italy

Road Finding method in the Central Tracker

this is an event in the extreme

case when the interaction rate <
is 20 MHz. In PANDA the rate is S
2 MHz (20 MHz possibly at a

* tracklets found starting <
from red circled hits :
collecting contiguous hits

later stage)

e MC truth
m— reco track
/\ Muvd Pixel hit
[J Mvd Strip hit
O Axial STT hit
t» Skew STT hit
mm SciTil hit

»4636 Straw tubes

Straw Tube Tracker system (STT)

»23-27 planar layers
15-19 axial layers (green) in beam direction

4 stereo double-layers for 3D reconstruction,

a lot of pile up hits from
previous and subsequent
events !

with +2.89 skew angle (blue/red)

Pattern Recognition on GPUs Hough transform algorithm

KA

> sl

STRAWS

';;;Mvd i

-50—

Green line = MC truth Track

/\ Muvd Pixel
] Mvd Strip
O Stt Axial

v (em1)

Conformal
Transformation
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genfit2 in PandaRoot ) J0LICH

e genfit2: experiment-independent track fitting tool. External package

@ genfit2 is announced to be a general tool, for every B field.
Revision checked in PandaRoot: genfit2-v1826; old revision: genfit-v400.

@ In PANDA different field maps:
solenoid (2T)
dipole (2Tm)
“twister” TransMap

@ genfit (rev 400) and genfit2 (rev 1826) are both available in PandaRoot:
the current PandaRoot trunk-rev 28747 provides a switch to run both.

A) 0LICH
genfit2 design
PlanarMeasurement
Measurements WireMeasurement
N~
SpacePointMeasurement

Virtual detector plane, measurement
coordinates, covariance

/{ Track parameterization

Track Q Extrapolation through material and magnetic field

Representations
Propagate time of flight |
Particle hypothesis

Use measurements and TrackReps to calculate fit results
Track fitting algorithms )

s Int itiorf
Ge . . . ™ -
s Experiments using genfit2: Belle I, PANDA, GEM -TPC, FOPI, SHip, AFIS,...)
The family is growing.... CH
. . g JULICH Why shall we use genfit2?
genfltz deta"S S = General implementation of the Kalman fitter
« Track representation included
Track fitting in genfit2 based on: : ngr;tr;r)zggt ;tx?/gsag?f;g&erfaced
3 .'}";iiﬂf;:;éi ation = Many parameters for fit convergence user-adjustable
3) Fitting algorithms: Kalman fitterg Iinegr[zing the transport around the §tate prediction; : wg%pg;??grt gce?;tgifg{ dgeometry
gillr:r:an fiter linearizing around the reference track; = Suited to track low momentum particles: PANDA and BELLE II: p>50 MeV/c

GBL.

@ Measurements: objects containing measured coordinates from a detector;
provide functions to construct virtual plane;
provide measurement coordinates and covariance in that plane.

AO>r20H

@ Track representation: combine track parameterization and track extrapolation code

How difficult is to interface genfit2 with another framework?

It depends...

My experience with PandaRoot:
~3 months to get the GenfitTool interface running inside /development/brunch/;
~3 months for debugging (PidCorrelator, memory leak, ...);

>3 months to perform generalized tests with all mass hypotheses and

@ Fitting algorithms: use measurements and track representation to calculate fit results;

differentp,

start value for fit needed, e.g. from pattern recognition s Documentation: common paper with Belle Il and PANDA planned. B



A New Track Reconstruction
Algorithm based on Hit Triplets and

Broken Lines

André Schoning
Universitat Heidelberg
Physikalisches Institut

with contributions from N.Berger, M.Kiehn, A.Kozlinskiy

Connecting the Dots 2016
HEPHY Vienna
22.February 2016

A.Schoning, Heidelberg University 1 Connecting the Dots, Vienna, Feb 2016



New Triplet Tracking Concept

(O]

@)
(o0

e
@
@O

o
© o

o

o © © ©

A.Schoning, Heidelberg University

objects

Hits

fewer fakes!

Triplet
Prototypes

Track
Candidates

Final Tracks

algorithms model / theory

\ T~ . '

Comblner Preselection
/ Rules

fast (local)
Fitter Fit Model

\ . bench-
/ Arbitrator marking
7 Connecting the Dots, Vienna, Feb 2016




Example: Mu3e Experiment

Typical LHC Experiment

Search for . 0(10900) charged tracks at HL-LHC
o o et et e —"“ » material budget ~ 2-3% / layer
pom  Targer * 10-12 layers per experiment for R<1m
particle momenta: e ' Uncertainties:
p <53 MeV/c * hit resolution ~ 15 ym — O~ 0.15 mrad
- . * scattering: 0g i XX, - p,,=15GeVic
Pl (=

/“

Mu3e Phase ll | .\

> uncertainties dominated by
multiple scattering!

A.Schoning, Heidelberg University

Connecting the Dots, Vienna, Feb 2016

p<10 GeV/c

* multiple scattering

* ~99% of particles

uncertainty dominates

p~500 MeV/c

p=10 GeV/c .

* hit uncertainty
dominates

* ~1% of particles

Pythia:

"/l LHC minimum bias

A.Schéning, Heidelberg University

Connecting the Dots, Vienna, Feb 2016

neglected for the moment

@ = Ol B Overview of Algorithm
Th T

multiple scattering hit uncertainties

¢ solution: (if triplet is not too small — discussion later)

~ 3.
@ N,. (Nlayer-Z) slowest part!

R Kk ®¢ sin®6 + B Oc K, ®c, B, Oc c T;'Pdle:
3D = 5 .2 p: are parameters calculated andiaates
K2 sin” 6 + 32 from three hit coordinates \ fast!
~ Iog(Ntriplet cand)
¢ uncertainty + fit quality: Fitted /
- Y Triplets
o(Rap) = o 1 . 2 1 (B®c—k O¢)? P \ Triol fast!
3D) = OMS\(\[ o =g g e ous K2+ B2/sin®fc Mrg?':ér ~log(N,,....)
ple:
. , , Track Cand. /
¢ multiple scattering uncertainty (calculated from above obtained parameters): £10:8 CELE \
track cand

b the scattering parameter b is given by
e the effective material thickness and the
3D} magnetic field strength

oMS =

/@

4.5 (1;11 T /_-\'/-\'u |




Wire Cell Reconstruction Method and

Software Library
for Liquid Argon Time Projection Chambers

The origin of LArTPC technology for Neutrinos: C. Rubbia, 1977

Brett Viren led to ICARUS, the first, large-scale LAITPC.
for the BNL Wire Cell Group ¢ 2x 300t modules. | i
e Took data in the Gran Sasso (i
Physics Department tunnel, Italy from CERN ’ T)
neutrino beam. ! J
BROOKHIVEN  Moving to Fermilab as part il
NATIONAL LABORATORY of the Short-Baseline ;

Neutrino Program.

LArTPC Experiments - 5 3VE (o sxeenen

“International mega-science project”




Anode wire planes:

Uu vy
LIqUId Argon TPC ! /: LAITPC Detectors Wire Cell Technique Wire Cell Software
e bt : Anode wire planes:
m.i.p.ionization: T u vy
6000 e/mm L Liquid Argon TPC -
I m.i.p.ionization: ]
11 6000 e/mm
Cathode i ?
Plane 1 il yiu?”mq Tl
] Cathode Iééagéaéz?éégé;z' ’
| Plane [A#"‘y?ﬂﬂfu‘ W
: e
1 A
e
VA |
C T
i
—
D E— Egife ~ S00V/cm )
Egrife ~ 500V/cm ime time
LArTPC Data
LArTPC Ccn produce huge quanﬁﬁes Of AWTM [m l |sgnd ng’ LAIPC Detectors Wire Cell Technique Wire Cell Software
e 10%-10°% channels EEE -
e 2MHz @ 12 bit waveform digitization | |
« each “event” spans several miliseconds [cets geomety| | Tmesices | e
Two general DAQ readout strategies: Nmt ‘ \ i
Full Stream: read out entire waveform (MicroBooNE) [ { r
e 30GB/s in 120 MB “events”. e e / B
e DUNE af FS would produce 5 TB/s in 25 GB “events”! True energy depositions Wire Cell Imaging

Zero Supression: only save waveform parts with significant activity (DUNE)

e Threshold chosen based on noise (Eiesh ~0.1 MeV/wire)
e 2.5MB/event — 100’s TB/year
e requires rejection of natural ¥ Ar decay @ 50 PB/year

e Excellentimaging of major features and isolated activity.
— astatic 2D view doesn’t do it justice! Follow link to view it online.

e Residual ambiguity seen as wide blue patches.

— Inherent problem of tomography using low number of viewing angles
—  Will pursue an iterative approach: constrain ambiguous regions after
reconstructing the good parts to the kinematics-level.




Deep Learning Event
Reconstruction In LArTPC

Amir Farbin

- . . :
Convolution

LArTPC

Time Projection Chamber

Electric Field

< Electric Field /A

Electric Field
-

Electric Field
<

Read out charge and light produced
using precision wires and PMT's

Neutrino interaction in LAr produces
ionization and scintillation light

Drift the ionization charge in a
uniform electric field

ArgoNeuT Data ArgoNeuT Data

v, candidate

S~

S PEC I L Neutral Current
: 7’ candidate

ArgoNeuT Dat.;

Tracking, Calorimetry, and Particle ID in same detector.
Goal ~80% Neutrino Efficiency.

e/gamma PID

Feature maps. Featwre maps  Feature maps.

. Input
. . . . . IF G

Deep Learning

Featwe maps  Outout
8@4xt 0@

Deep Convolutional Neutral Network

(GoogLeNet)

ﬁaw Data: Wire ADC vs Time x Planes

Out of the box Feasibility
Study with No attempt at
optimization.

(LArIAT Simulation)

U 20k_Training-sample
40k _Training-sample
08 50k_Training-sample

Photon to be Electron

06

04 Best Results: 2%
fake at 90% Electron

02 Efficiency

I

-

1

0

NEXT Experiment

o o2 04 06 0.

8 1
Electron to be Electron

Neutrinoless Double Beta Decay using Gas TPC o sow

SiPM readout give 3D images. Best use 3D Convolution.

3
<
¥ (mm)
5 &

PMTs measure energy, low spacial resolution:

BACKGROUND

« Source moved around volume to calibrate response.

Signal: 2 Electrons. Bkg: 1 Electron.

+ Hard to separate, because of high multiple scattering.

First DL Study: what is the ultimate performance? Are we limited
by the physics?

L

Fast simulation of energy deposits with a few effects put in.
(100k of sig/bkg each)

1 mm effective resolution. Real detector planning 1 cm.

150

Projected 3-D into 3 2D planes and put into 3 color intensities.
Use GoogleNet.

-
&

99.96% Signal Efficiency for 0.2% Background.

Next step is to reduce resolution to optimize detector. g




FIAS Frankfurt Institute
for Advanced Studies ﬂ

Online reconstruction and calibration with feed
back loop in the ALICE High Level Trigger

David Rohr, drohr@cern.ch
Frankfurt Institute for Advanced Studies

Challenges fof Onlint
= | ' =

Al As A Anan

FIAS Frankfurt Institute
for Advanced Studies ﬂ

*  Calibration involves long-running tasks, which cannot run in the HLT in an event-synchronous way. (Problem A)
- Asynchronous tasks

*  HLT is loop-free, calibration is created at the end of the chain, and must be used at the beginning. (Problem B)
- Zero-MQ sidechannel, that feeds back calibration asynchronously.

+  Calibration requires TPC and ITS tracks.
* We need fast online tracking algorithms. (Problem C)
- GPU TPC Tracking
» There is a chicken and egg problem: calibration needs reconstruction and vice versa. (Problem D)
- Fast standalone (simple) ITS tracking to prepare calibration.

«  Calibration must process in the order of 5000 events (in Pb-Pb), which takes some time.
* We cannot cache events that long. (Problem E)

- Apply the calibration after some delay as long as it is stable.
(The first events of a fill are processed online without calibration.
For offline, the full calibration is available.)

Nextzdé/v/qlo_\prﬁtsl

CA Track

In-Sector
Seeding

Merging
Between-Sector
Merging
Final TPC
Track Fit

TPC Track

TPC Cluster Finder

Transformation

TPC Global

Kalman Track Merger

Following
GPU Buffer Management

Shared

e ————————
For Run 3, we must merge transformation and tracking, Buffer

Shared
Buffer

TPC Prolon-
gation to ITS

super-component that runs

everything at once on GPU. Output

““uoneBuojoid S11 pue i

{eul syyabig

FIAS Frankfurt In
for Advanced St

FIAS Frankfurt Institute
for Advanced Studies ﬁ

* Reconstruction of particle trajectories in the
TPC is computationally very expensive:

— Several thousand tracks per event.
High combinatorial complexity.

* As a gas-based detector, the TPC is sensitive
to calibration.

» Environment variables such as temperature and
pressure affect the calibration.

» The conditions change during a run.

- Challenging tasks for the HLT: A
~ Needs fast reconstruction algorithm for online operation.
Detectors must be continuously calibrated online.

* Online calibration improves online reconstruction quality.

«  Online calibration can save offline compute resources by replacing offline calibration passes.
*  Future experiments (ALICE in Run 3, FAIR at GSI) rely on online processing and thus online calibration.

Overv@ prcﬁenk Em ponents
| ' et =

FIAS Frankfurt Institute ﬁ
for Advanced Studies

@

180 Compute Nodes — 180 Instances of Reconstruction Chain

oo
FPGA CRORC

(66 FEP Nodes)

TPC Clus- PC Bra
ter Finder erging P P

A0S RA

TPC Clus- PC Trans » P =
ter Finder ormatio a g

Default OCDB Calibration,

ZD D

Pass || ROR
Through constr

OA Luminous
Region Prompt QA

Triggers

~——>...Future Comp

o)

Calibration Node

Asynchronous Failure-
~ Resiliant Components ~

Transformation
Preparation

TPC Offline
Preprocessor

ZeroMQ Feedback Loop

Calibration
Merger




Machine learning and parallelism in

the reconstruction of LHCb and its
upgrade

Michel De Cian, University of Heidelberg
on behalf of the LHCb collaboration

LHCb 2015 Trigger Diagram
40 MHz bunch crossing rate
L L L

LO Hardware Trigger : 1 MHz
readout, high Er/Pr signatures

stage | time/event

. Software High Level Trigger

(e e ) HLT1 (150kHz) | ~40ms
By T —— : HLT2 (1 2.5 HZ) ~ 800 ms

detector calibration and alignment

Full offline-like event selection, mixture
of inclusive and exclusive triggers

12.5 kHz Rate to storage

[GPGPU opportunities at the LHCb trigger]

Efficiency versus p(true)
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©) - Tolearn about GPU systems: Implement the Velo tracking on a GPU
E (using CUDA) and run it in "parasitic” mode in Run II.

.5 * Runit in the monitoring farm of the HLT.

(=]

5 - Efficiencies are very similar, but using "event level parallelisation’, the
(@) GPU obviously gains.

p—

Q

S

+ The question is not only: What has the best performance, but also: what
has the best performance/cost.

T T T
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+ General overhaul of "ghost probability” for Run Il, improved timing by
factor O(90)
+ Using less than 0.5 ms per event.
+ Customized neural net by improved timing of the activation function
(see backup for details).

Fake track rejection (II)

- Use a combination of a cut on the track-x2 and the output of the neural
net to reject fake tracks after the Kalman filter.
+ Large reduction of fakes without signal loss (remaining = 14.0%).
+ Reduces combinatorics in HLT2 for trigger selections by 40%.

Thanks to machine learning, LHCb managed to reduce its rate of fake
tracks by about 40% in the trigger while maintaining the efficiency.

The time-consumption of the reconstruction was reduced
by a factor of 2, thanks to the help of parallelization / SIMD in hot-spots
of the software.

The upgrade of LHCb will use a purely software-based trigger.

- This poses severe restrictions on the timing-budget.

Many ideas are explored for massively parallelizing parts of the track
reconstruction. Next months will lead to a decision.

Parallelization will be crucial for track reconstruction in the future.



Track Reconstruction Challenges for
FCC-(hh) and HL-LHC

Step 2

A. Salzburger (CERN)

- the journey begins

Pimp your engine

» CPU performance driven SW campaign to optimise the ID tracking

T T
[ ATLAS Simulation Preliminary
£ RDO to ESD

Vs=14TeV

8 88 38338

{ AR R LA LA 4 R |

Reconstruction time per event [s]

l——
‘S yearwio |
.. working

=)

 head release |

sl il Lol

.
: mag field :
| pattern updates

Tracking SW workshop Tracking SW workshop
*Run-2 planning" “LS 1 Mi-term®
N 3045 et 012

L H L
o 72,320t 19.0, B4bit 19.1,64bit

L un- —— O

[10E ranes

March/April 2015
“Run-2 release frozen”

> 5CPU gain, C)

no loss of physics
performance
A. Salzburger, CHEP2015

time Iine?

From TDR to data taking

» TDRs for ATLAS/CMS Tracker TDRs written in late 1990s

- track reconstruction software strongly inspired by LEP experiments

Inner Detector

Technical Design Report

.
i
1
Ll

1997

- ATRECON framework (FORTRAN)

- full move to Gaudi-Athena around

2002/2003

The Tracker System Project
Technical Design Report

1999

- ORCA framework (2000/2001)
- move the CMSSW in 2006

Software/Algorithms - ways to speed up

LEP & LHC preparation

LHC Run-1

LHC LS-1

LHC Run-2/3

LHC Upgrade

HL-LHC Run

FCC(-hh)

(=0

7"

1€

2DM

2€

4 DM

(en)(©)/[V)

22727

o=y
&

approximate reality,
simplify your models

optimise your code

prepare your work,
use look-up tables

take shortcuts,
or simply cheat

don't do anything,
work on demand

use new technologies,
increase your work force

M~ 3

- see talk J. Hrdinka

il

® B ®
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Conclusion

» LHC Run-1 was a great success for track reconstruction

- wonderful results with outstanding performance

» LHC experiments have largely “updated” the track reconstruction
for Run-2 and Run-3

- this will most likely work (just)

» HL-LHC wiill be a shift in paradigm

- instantaneous pile-up of up to 200 interactions expected

- not sustainable with current approaches/software
needs R&D not only on the detectors, but also on the algorithms, the SW

» FCC-hh

- welll, let’s see ... however, let’s not forget that we want to do precision physics
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Performance requirements for
the Phase-2 Tracker Upgrades
for ATLAS and CMS

r(m)

Duccio Abbaneo
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Requirements from the experiment as a whole

The Trigger is much more challenging at HL-LHC

Higher luminosity requires higher first-level trigger rate(*)
and/or more effective event selection

Selection algorithms become less effective in high pileup!

Solution: higher first-level trigger rate AND longer latency
ATLAS: 100 kHz — 1000 kHz
25us = 6.0 us

CMS: 100 kHz — 750 kHz
3.2us - 128 us

In additionin CMS:
The Outer Trackercontributes to the L1 trigger decision!

This choice drives several differences between the two tracking detectors
To some extent it is motivated by other differences between ATLAS and CMS

(ATLAS has higher-granularity information from the calorimeters, CMS has a stronger B field)

™) To confuse the reader, the first-level trigger is called Level-0 in ATLAS and Level-1in CMS

CMS
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Working pnnmple of pT modules CMS

“stub’

VERERERERERR
OF

» Sensitivity to p; from measurement of A(R@) over a given AR
® For agiven py, A(R®) increases with R
@© Inthe barrel, AR is given directly by the sensors spacing
@© Inthe end-cap, it depends on the location of the detector (tg9)

* End-cap configuration typically requires wider spadng, and yiekds worse discrimination

» Optimize selection window and/or sensors spacing
© To obtain, as much as possible, consistent p; selection through the tracking volume

» The concept works down to a certain radius
®© 20+25 cm with the CMS magnetic field and a realistic 100 um pitch

» No room for stereo strips!!



1

Outer Trackers in Summary

ATLAS ¢mm l m) | CMS

High Granularity

25mm x 75 um
50mm x 75 um

N

Stereo strips
for z coordinate

Inner boundary 350 mm

Wedge modules
in the End Caps

25mm x 100 um
50mmx 90 um

Macro pixels
for z coordinate

Tracking @ Level-1

pr modules

P.V. discrimination

Stub finding
eﬂicigmy

half-size
PS modules

Inner boundary 200 mm

Rectangularmodules

in the End Caps

Tilted Inner Barrel

25




Pixel Detector Layout: CMS

¢ [mm)

Started from a fairly “conventional” layout
» Barrel geometry inspired by “phase-1" detector
» End Cap geometry inspired by Outer Tracker Double-Disks

Differentoptions for module sizeunder consideration
Large pixels (x4 surface) could be usedin the outermostlayers/rings, to save power

BUT:
Installation of the central section around the beam pipe requiree
The detector slides in with aninclined angle!
The OT/Pixel boundary must be at larger radius in the
A step? Where? How large?
A conical y?(... watch i )

Performance: CMS
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» Compare Phase-1 @ 50 PU with Phase-2 @ 140 PU

> MS Preliminary Simulation
c 3 T el T
2 S 0.9f ]
8 3 ) .
% ﬁ 0.8f* . - 4
> o> 07F E
£ £ . .
S X 06f E
@ 8
S o . ©
0.4F e
. .
. 0.3F ttbar event tracks E
. pY=1OGeVmuom 02 p,>09GeV,d <35cm
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o 0.4QI$Prlliml
[
90.35
8 o3
S,
©0.25
+
%0.2
5015
§ .
= 0.05]
=4

XX,

Phase-1 tracking software
adapted to phase-2 geometry

TK material
| Phase-1
Ph-2Flat TBPS

o

i

I L
0.5 1 1.5 2

Expect substantialimprovement alsoin
2z, resolution and b-tagging

Too early to give quantitative estimates

37

Pixel Detector Layout: ATLAS

.... to be combined with a creative end-cap layout...

R [mm]

Etdoncy

Encnney

[T T

—ATLAS ITk Simulation

STEP1 Layout concept: Fully Inclined 4.0
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“Extended” Layout Option For Pixel Barrel Detector
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Use Of Pixel Cluster Information
In Pattern Recognition

Sasha Pranko

(LBNL)
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How Can Cluster Size Information Be Used?

Expected cluster S|ze assumlng Z0 0
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*  Primary tracks, 3<hj<4
0 Fake tracks, 3<inj<é

Fraction of clusters
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STEP-1: pre-processing
— Many pixel clusters are not even used in seed
and track finding
— Safely get rid of as many spurious clusters as
possible to reduce the number of space points
to be considered in O(N?)-loops at STEP-2

STEP-2: find track seeds made of 3 space

N, % pitch

Charged track

LHC beam line

v
(Np‘.x —é)xp,

Main idea: long clusters = “tracklets”,
providing initial precise estimates of 0
and z,

— Seed pattern recognition

— Potential to reduce fake rate

— Potential to reduce CPU time

tanf = =1

Basic information about sensors:
Barrel Layer-0,1 & inner end-cap ring: 50x50x100 um?3
Barrel Layer-2,3,4 & end-cap: 50x50x150 pm3

Seed Finding Based On Cluster Size: Reduction Of Fake Tracks

* Default pattern recognition: large fraction of the reconstructed
tracks in the very forward region (|n|>3) are fakes
* New pattern recognition: large reduction in the number of fake

tracks in the forward region with minimal impact on tracks from hard
scattering and pile-up interactions (see previous slide)
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Refined expected cluster size
based on seed/track angle 6

points (next slide)

— Strategy-1: reject seeds where pixel cluster size
is incompatible with 6,4

— Strategy-2: search for clusters in small cone
determined by cluster size in inner layers

STEP-3: combinatorial track finder

— Attach cluster only if cluster size is compatible
with ecandidate

e STEP-4: ambiguity solution

— Can use estimate of 9~atan(t/(p*Np,,e,)) asan
additional parameter in the track fit
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‘tracks.

N,..(Cluster cuts)/N

— Preliminary results; optimization is still in progress; performance depends on

layout

Performance in ttbar events wnth 200 plle up C0||ISIOnS at vs=14 TeV
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Tracking for Triggering Purposes in

John Baines on behalf of the ATLAS Collaboration

Requirements:
*  High Efficiency; Low fake rate .
*  Excellent track parameter resolution
Challenges:
* Event complexity: many superimposed collisions

45 (Run 1) to 69 (Run 3) to 200 (HL-LHC) °
* High rate:

* 100 kHz Run 2&3 to 400 kHz (1IMHz) HL-LHC
¢ ShortTime:

¢ finite HLT farm size => ~300ms/event for ALL Reco.

* ~factor 50 faster than offline ¢

* Huge number of hit combinations
for current luminosities (~30 interactions):

10 Space-oin mw

Track seed making

DR @D

track following”

Space-point = Pixel cluster or SCT cluster-pair (¢-+stereo)

A

q‘rigger Requirements,Challenges & Solutions

Solutions for the Trigger:

Reconstruction in Regions of Interest
® Reduced detector volume reconstructed

* Knowledge of L1 trigger
optimised reconstruction

e enables

Two stage tracking:

* FastTracking: Initial loose trigger
selection using reduced resolution tracks
* Precision Tracking: full precision tracks
for final trigger selection
Limit hit combinations:
* Geometrical constraints using Rol,
beamspot and possibly primary vertex info
* HardwareTrigger: FIK (Run 2 & 3)
® Pattern matching using custom ASIC
Acceleration (Future)
* Exploring use of GPGPUs

FTK : \

Gets SCT & Pixel data direct
from detector front-end
Performs pattern matching

Fast TracKer FTK ’

sso0 ssa

& track fitting at up to full
o % Level 1 rate (100 kHz)
. = to coarse- { Sends tracks to the HLT:
G ically grouped resolsion hits perigee parameters and hits-on-
data distributed to V’ track information (cluster
i ‘ p g units N/ ‘ centres)
Caortim on FPCAS” FTK

[—— ]
== Comparison to HLT has access to:
—_—— p;:':,r:sn:_:::;e ® FTKTracks in whole event
=== resolution ® HLT Refit of FTK tracks
Precise 'mmg with good Track fit with full-resolution © HLT tracks in Rol
tracks bemg extrapolated info for track candidates
to missing layers
FTK Tracks HLT Refit of FTK tracks in Rol
*  Primary vertex reconstruction ‘ *  Selections requiring higher parameter precision incl.
¢ Initial track-based selections in whole *  Primary & secondary vertex for b-jet tagging
event or large Rol incl. *  Impact parameter and invariant mass for B-physics

¢ hadronicTau-lepton decays
* B decays including hadrons
* Lepton isolation; Track-based jets

HLT tracking in Rol

*  Single leptons: e, W, leptonic T decays
*  Final selections requiring ultimate efficiency & precision

N
GPU Performance & Outlook
ATL-DAQ-SLIDE-2014-635
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ATLAS Prellmlnary Simulation

1000 ff @ 2x 10* cm2 s
= All tracking on CPU

[~ © GPU + clone removal on CPU
« All tracking on GPU

" Nvidia C2050 GPU

[ Intel E56020 CPU 2.6 GHz

Code Speed-up:

® Average factor 12 speedup for Tracking
on GPU c.f. 1 CPU core

Total tracking time [ms]

fb00

1
3000 4000
Number of input spacepoints

2000
System Performance:

* Question: What increase in throughput comparing CPU system with CPU+GPU
® Measurements in progress:

® Updated hardware: K80 GPU, Intel E5.2695v3 CPU

¢ Updated software: Run-2 Tracking algorithm

* Initial measurements with Seed-Maker suggest factor of two increase in system throughput
could be obtained by adding GPU.

* Work in progress to add GPU track following

Prototype also includes Calorimeter & Muon reconstruction /




