

The W $\rightarrow \tau v$ analysis - update for MC08 10 TeV data -

Copenhagen Tau Workshop 2009

Paweł Malecki (IFJ PAN)

with special thanks to Diego Casadei, Yann Coadou, Elżbieta Richter-Wąs

Outline

- Physics motivation (CDF results)
- Selection "cut-flow"
 - Trigger selection
 - Estimation of non-QCD background rejection
- QCD background issues Atlfast II and full-sim
 - QCD rejection studies
- Summary and plans

Motivation (CDF results)

The $W \rightarrow \tau \nu$ process will provide most abundant source of taus in the first 100 pb⁻¹ (10x larger σ than for $Z \rightarrow \tau \tau$)

Possible measurements:

• Cross-section:

$\sigma(pp \rightarrow W) \times BR(W \rightarrow \tau \nu)$

CDF:2.62±0.07(stat)±0.21(syst) ±0.16(lumi) nb

• Leptonic branching ratios of the W boson:

$BR(W \rightarrow \tau \nu)/BR(W \rightarrow e \nu)$

CDF: 0.99±0.03(stat)±0.07(syst)

 \bullet Ratio of the τ and electron electroweak coupling to charged current:

 g_{τ}/g_{e}

CDF: 0.99±0.02(stat)±0.04(syst)

In ATLAS with 10 T	TeV:
$\sigma(W \rightarrow \tau \nu, \tau \rightarrow had)$	= 7.69 x 10 ³ pb
σ(QCD jets)	= 1.2 x 10 ¹⁰ pb
	S:B = 7x10 ⁻⁷

Such measurements have been performed by CDF – see: Nucl. Phys. B: Proc. Suppl. 144, 323-332 (spires-hep/6099807) – from Run II with 72pb⁻¹

At the LHC:

Signal cross-section: **~10x** higher Background cross-section: **~100x** higher Signal extraction will be much harder

Data samples in use

Number	Process	x-sec [nb]	Filter eff.	Events/100pb ⁻¹	Events in fullsim Prod. Tags
106023	$W \rightarrow \tau \nu, \tau \rightarrow had$	7.69	1.00	7.69E+005	200k e347_s462_r604
105009	QCD J0 (8 – 17 GeV)	1.18E+07	1.00	1.18E+012	400k e344_s479_r604
105010	QCD J1 (17 – 35 GeV)	8.69E+05	1.00	8.69E+010	400k e344_s479_r604
105011	QCD J2 (35 – 70 GeV)	5.59E+04	1.00	5.59E+009	400k e344_s479_r604
105012	QCD J3 (70 – 140 GeV)	3.30E+03	1.00	3.30E+008	400k e344_s479_r604
106020	$W \rightarrow ev$	11.91	0.85	1.01E+006	1M e347_s462_r604
106021	$W \rightarrow \mu \nu$	11.91	0.85	1.01E+006	600k e352_s462_r541
106052	$Z \rightarrow \tau \tau$	1.13	1.00	1.13E+005	200k e347_s462_r604
106050	Z → ee	1.14	0.96	1.09E+005	1M e347_s462_r604
106022	$W \rightarrow \tau v, \tau \rightarrow lep$	4.15	0.87	3.61E+005	200k e352_s462_r541
105200	ttbar	0.37	0.55	2.05E+004	250k e357_s462_r579

ATLFAST – 2 (Fast Calo Sim)

	-					
105009	QCD J0 (8 – 17 GeV)	1.18E+07	1.00	1.18E+012	40M	e344_a68
10 <mark>5010</mark>	QCD J1 (17 – 35 GeV)	8.69E+05	1.00	8.69E+010	40M	e344_a68
105011	QCD J2 (35 – 70 GeV)	5.59E+04	1.00	5.59E+009	40M	e344_a68
105012	QCD J3 (70 – 140 GeV)	3.30E+03	1.00	3.30E+008	10M	e344_a68

Top priority – replace the Atlfast II samples with new ones as soon as possible – **duplicate events bug**

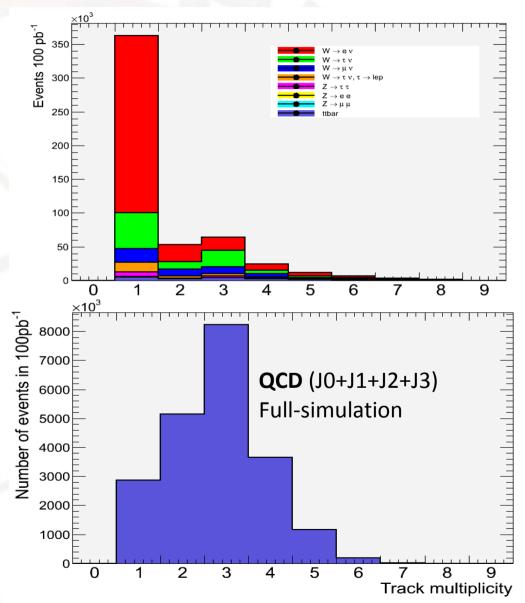
16 April 2009

Data samples in use

- All datasets from official mc08 production (AODs, rel 14.2.2X)
 - Where possible using **14.2.25.3** production with HEC on and EF E_{T}^{Miss} bug corrected
 - For ttbar r579 sample used with HEC on
 - Will update the results after "r635" processing is complete
- Signal sample is **not** filtered
- Processed with: Athena-14.2.25.3 using:
 - GRID (Panda)
 - IFJ Tier3
- QCD full-sim samples too small for detailed rejection studies need to use Atlfast II samples
- (14.2.20 official production, full tracking, fast Calo-Sim)
- Atlfast II samples do not contain trigger information need a normalization factor for trigger efficiency
- Atlfast II samples are affected by the **duplicate events bug**. However by the time of the workshop they were an only available option to make a full analysis
- All QCD plots and numbers are made with x-sec weighted sum of J0 J3 samples

Trigger Selection

Trigger selection

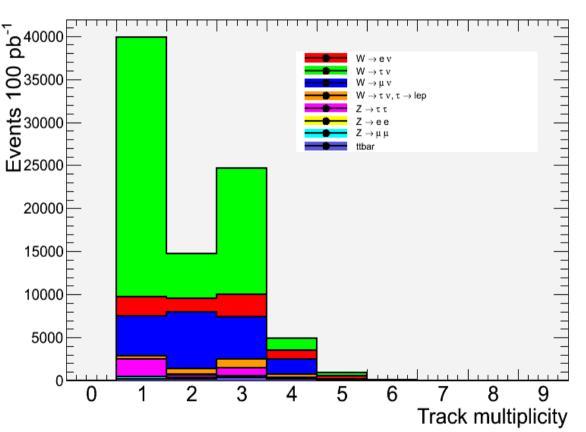

Base trigger menu: tau16i_loose_L1xe15_EFxe30

Process	#events in 100 pb ⁻¹
$W \rightarrow \tau v, \tau \rightarrow had$	105092
$W \rightarrow ev$	418545
$W \rightarrow \mu \nu$	44987
$Z \rightarrow \tau \tau$	10967
Z → ee	1913
Z → μμ	1568
$W \rightarrow \tau v, \tau \rightarrow lep$	35587
ttbar	7170
QCD overall	2.1×10^7

Main non-QCD contribution after trigger selection:

→ $W \rightarrow ev - dominating 1p channel, exceeds the signal by factor$ **4**

This will be handled in the offline analysis.


Offline Selection

The "basic" tau selection involves:

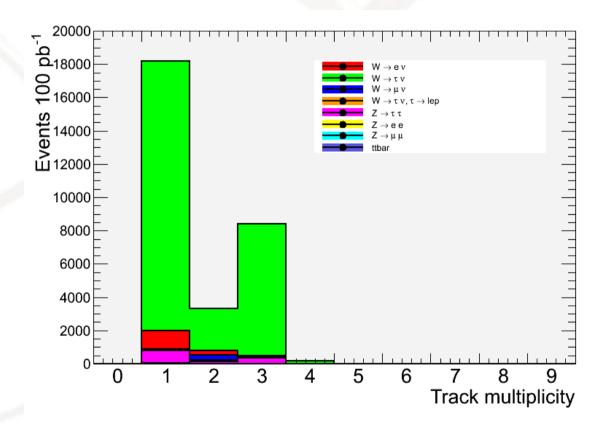
- Offline $E_{T}^{Miss} > 30 \text{ GeV}$
- Tau candidate from tau1p3p (track-seeded algorithm) with 20 GeV < p_{T} < 60 GeV
- Loose cut based identification
- Basic $\mu/\tau\,$ and improved $e/\tau\,$ separation

Process	#events in 100 pb ⁻¹
$W \rightarrow \tau v, \tau \rightarrow had$	51703
$W \rightarrow ev$	7787
$W \rightarrow \mu v$	17348
$Z \rightarrow \tau \tau$	3419
Z → ee	6
Z → μμ	706
$W \rightarrow \tau \nu, \tau \rightarrow lep$	3259
ttbar	1395

S:Bnon-QC

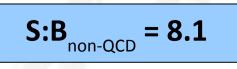
- →Dominant background from W \rightarrow lepton
- →Need to veto events with muons (W \rightarrow µv contribution ~30%),
- →Using an **improved** electron separation (see next slides)
- →Need tighter selection to suppress the background

Tighter offline selection vs non-QCD


The "tight" tau selection involves:

- Basic selection cuts
- Tau with EfficNN > 0.3 (medium identification)

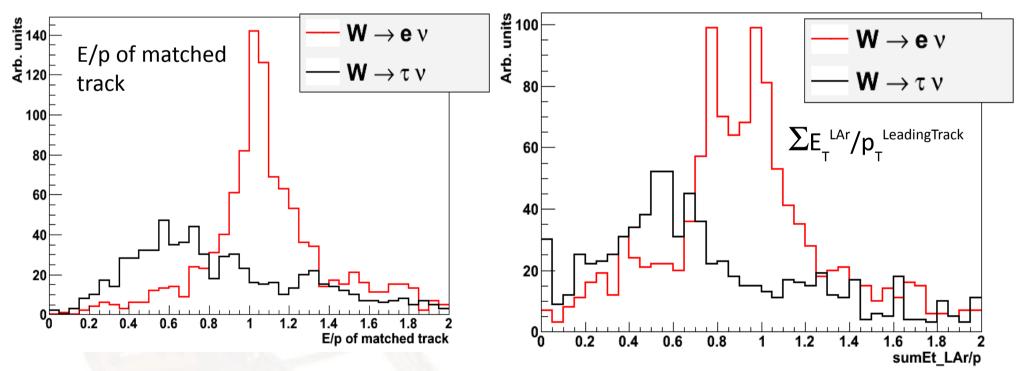
Process	#events in 100 pb ⁻¹
$W \rightarrow \tau v, \tau \rightarrow had$	26748
$W \rightarrow ev$	1522
$W \rightarrow \mu \nu$	294
$Z \rightarrow \tau \tau$	1166
Z → ee	0
$Z \rightarrow \mu\mu$	16
$W \rightarrow \tau \nu, \tau \rightarrow lep$	248
ttbar	74


• No "loose" electron in $\Delta R > 0.4$ from tau

• No "loose" muon from STACO in $\Delta R > 0.4$ from tau

→Non-QCD background is well suppressed

- →Highest contribution from W \rightarrow ev (6% of signal, mostly in 1p taus),
- $z \rightarrow \tau \tau$ also non-insignificant

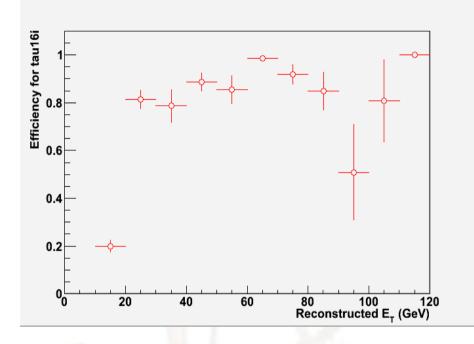


Improved electron veto

The electron rejection in single-prong tau candidates is greatly improved by adding the following cuts:

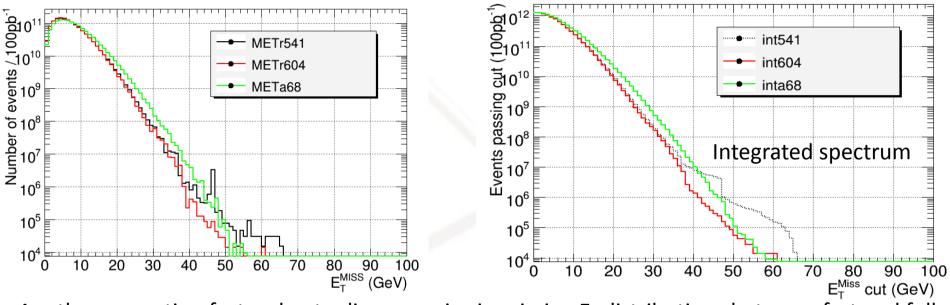
- E/p > 0.9 from a track matched to tau-candidate
- $\Sigma E_{T}^{LAr}/p_{T}^{LeadingTrack} > 0.9 from tau-details$

Both cuts are applied for 1p candidates with 0 π°


QCD background

1. Atlfast II has no trigger simulated – will apply a correction factor derived from full-sim comparisons

Thanks to **Pilar Casado** for the TOC Tau-trigger part only reproduced here. MET – part – will be applied when ready.


Tau-trigger scaling factor is estimated to be **0.78** (using final QCD spectrum of tau p_{τ})

2. Differences in offline E_{T}^{Miss} distributions

Another correction factor due to discrepancies in missing E_{τ} distributions between fast and full simulation – at 40 GeV the estimated scaling factor value would be **0.4**.

3. Tau-reconstruction & identification performance issues

	Full-sim	Atlfast II
No cut	1.27282e+12	1.27282e+12
Tau reco pt>20	6.95743e+09	7.35227e+09
Tau loose id pt<60	3.32725e+09	3.48246e+09
Tau medium ID	3.22918e+08	4.80934e+08

Rejection of EfficNN > 0.3 is slightly worse for Atlfast II samples – factor **0.67** will be applied

16 April 2009

Pa. Malecki – W $\rightarrow \tau v$ with mc08@10 TeV

"Cut flow" vs QCD - I

Selection	$W \rightarrow \tau v$	Incl. QCD	Incl. QCD (scaled)
E _τ ^{Miss} > 30 GeV, Medium τ-ID	26748	8.41 x 10 ⁵	90200
E_{T}^{Miss} > 40 GeV, Medium τ -ID	11086	30097	6300
E _τ ^{Miss} > 50 GeV, Medium τ-ID	1687	2123	900

Uncertainty estimation:

At 30 GeV the highest contribution comes from the J1 sample:

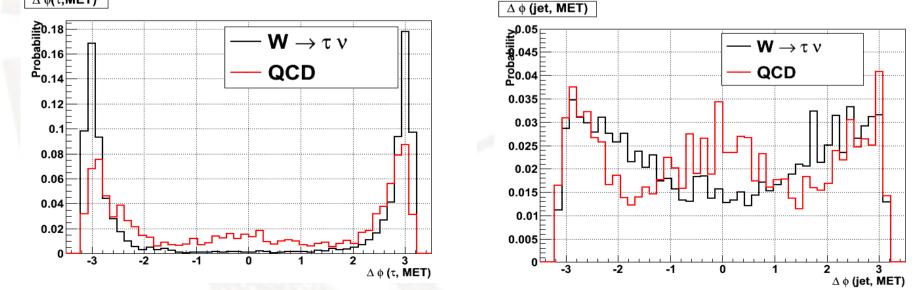
cut	JO	J1	J2	All
E _τ ^{Miss} > 30 GeV, Medium τ-ID	5.90e+04	5.52e+05	2.16e+05	8.41e+05

In lower p_{T} bins the E_{T}^{Miss} spectrum is also lower on average and with shorter tails

We can therefore neglect the J0 contribution to stat. uncertainty at 40 GeV and more.

cut	JO	J1	J2	All
E _τ ^{Miss} > 40 GeV, Medium τ-ID	0	15207	12018	30097

However at 50 GeV the dominating uncertainty term is related to J1 statistics. Uncertainty at 50 GeV level is 2172 (100%).

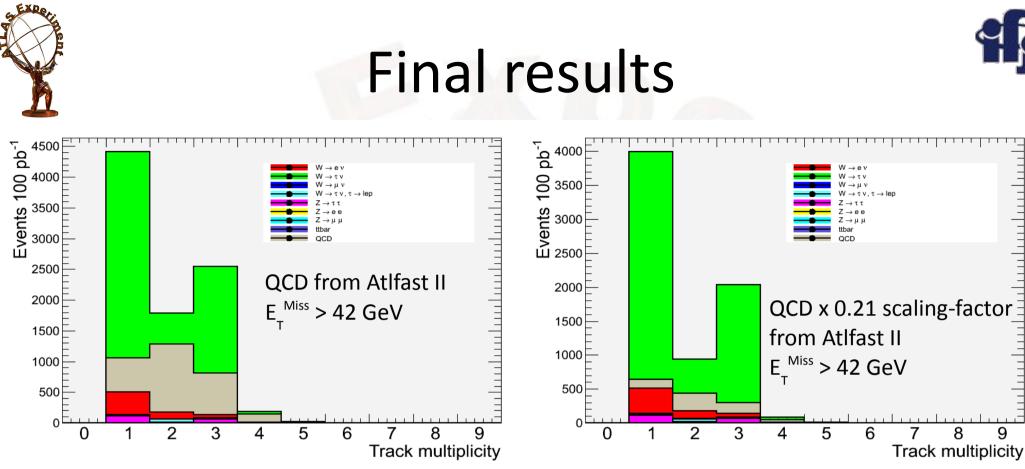


Selection	$W \rightarrow \tau v$	Incl. QCD	Incl. QCD (scaled)
E _τ ^{Miss} > 40 GeV, Medium τ-ID	11086	30097	6300
E_{T}^{Miss} > 40 GeV, Medium τ -ID, veto fake- E_{T}^{Miss} topology	7536	6890	1440

At 40 GeV "for free" we can reduce background rate by **4.4** using E_{T}^{Miss} topology cuts (actually removing events with fake topology of E_{T}^{Miss-} see also ATL-PHYS-INT-2009-011 as a guideline

- $|\Delta \phi (\tau, E_{\tau}^{Miss})| > 2.0 \text{ or}$
- $|\Delta \phi (\text{jet}, E_{T}^{\text{Miss}})| > 1.0 \text{ for Cone4} \text{jets with } p_{T} > 15 \text{ GeV not overlapping with } \tau$ -candidate

"Cut flow" vs QCD - III


Selection	$W \rightarrow \tau v$	Incl. QCD	Incl. QCD (scaled)
E_{T}^{Miss} > 42 GeV, Medium τ -ID	7357	10753	2250
E_{T}^{Miss} > 42 GeV, Medium τ -ID, veto fake- E_{T}^{Miss} topology	5629	2501	520

• At 42 GeV E_{T}^{Miss} threshold **S:B > 2** with no scaling factors applied

- Scaling factor might be wrongly estimated but **obviously it is lower than 1**
- Jets with no associated tracks are still present, mostly in J2 & J3 samples, but amount of such events is below 10%

• Higher E_{τ}^{Miss} thresholds would result in significant reduction of signal events, with no improvement of S:B ratio (difficult to estimate due to low statistics)

- Requiring additional jet accompanying the identified tau does not improve S:B ratio at this E_{T}^{Miss} threshold level
- Vetoing the jet might be considered but the impact cannot be estimated due to low statistics, however it will yield a 30% signal rate reduction

Not sure about the estimation of the scaling factor uncertainty – anyway its influence can only improve the S:B ratio.

Currently:

- No scaling S:B = 1.51
- With scaling S:B = 3.1

Duplicate events bug may cause a reduction in statistics in high-E_T^{Miss} region – need

to check that with new samples

Summary

- The W $\rightarrow \tau \nu$ process will be the first evidence for taus in Atlas
- Cross-section measurements should be possible, more precise (g_{τ}/g_{e}) unlikely
- Non-QCD background contribution: 15%
- QCD contribution acceptable event without the scaling factor
- The W \rightarrow ev will be a good control sample for event kinematics at given E_T^{miss} threshold. studing events from the same tau stream but with identified tight-electron

Plans for the near future

- Instead of scaling use AOD to AOD corrections
- Replace the data with HEC problem (r541, r579) with newer productions
- Replace the Atlfast II samples with new ones with no bug (Top priority)