

Status and performance of TauDiscriminant package

Marcin Wolter, <u>Andrzej Zemła</u> IFJ PAN, Krakow, Poland

ATLAS Tau Workshop 2009 April 15 - 17 Niels Bohr Institute, Copenhagen

Status of the TauDiscriminant package

Set of ID tools running on ESD/AOD and on RDO after tauRec:

- Tau1p3pDiscriCut baseline human-optimized cuts,
- Tau1p3pDiscriCutTMVA cuts optimized using TMVA,
- Tau1p3pDiscriLL projected likelihood ratio (TMVA),
- Tau1p3pDiscriPDRS PDE_RS algorithm (off in production),
- Tau1p3pDiscriNN Neural Network,
- **Tau1p3pEfficNN** compensated NN (flat efficiency in E_{τ}),
- TauCommonLikelihood2008 likelihood version using common variables,
- TauLikelihood2007 older likelihood version,
- TauBDTAnalysis Boosted Decision Tree,

TauBDT – Boosted Decision Tree, same variables as
TauCommonLikelihood2008 (off in production).
M. Wolter, A. Zemła, TauDiscriminant

Status of the package

- Tau1p3pDiscriPDRS and TauBDT are switched off in production due to high CPU/memory consumption.
- New adaptive PDRS implemented the size of the box adapts automatically to the density of training points.
- Versions in CVS:
 - offline/PhysicsAnalysis/TauID/TauDiscriminant-00-00-29 works with mc08 production
 - offline/PhysicsAnalysis/TauID/TauDiscriminant-00-00-34 (since ATHENA rel. 15.0.0) all the TauDiscriminant tools migrated to the new EDM. The new code is validated giving the same results.
- New DiscriNN, EfficNN and CommonPDERS discirminants in preparation.

New "track seed" Neural Network

New neural network using track seed variables (tau1p3p)

- Tau1p3pDiscriNN
 - Trained on mc08 data
 - Three separate discriminants (instead of <u>eight</u> networks in the old version):
 - 1. 1 prong, no Pi0
 - 2. 1 prong, >1 Pi0
 - 3. Multi-prong, trained on 3-prong tau candidates
 - $E_{_{T}}$ no longer used as discriminating variable, (E $_{_{T}}$ -EtEflow)/E $_{_{T}}$ used instead
- Tau1p3pEfficNN
 - Flat id. efficiency in ETEflow (for W->had tau nu channel)
 - Flat discriminant distribution for signal (W had taunu)
 - Not biasing the ntrack spectrum

April 2009

M. Wolter, A. Zemła, TauDiscriminant

April 2009

M. Wolter, A. Zemła, TauDiscriminant

The discriminant is biasing the ntrack spectrum – to avoid this we should remove some discriminating variables for 3-prong candidates.

Signal: W had tau nu, Background: J0+J1+J2+J3 M. Wolter, A. Zemła, TauDiscriminant

Performance of new Tau1p3pEfficNN

rwidth2Trk3P and *trFlightPathSig*. *Signal: W had tau nu, Background: J0+J1+J2+J3* M. Wolter, A. Zemła, TauDiscriminant

April 2009

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Efficiency

New adaptive CommonPDERS

- Uses variables from both: track seed and calo seed collection (same as used by TauCommonLikelihood)
- Currently a discriminant for multiprong candidates ready (15 variables), 1-prong in preparation var tau emRadius var tau leoFrac

Discriminating variables

Calo seed

- EmRadius
- IsoFrac •
- StripWidth2
- NumStripCells •
- **IpSigLeadTrack** •
- EtHad2etTracks
- etEM2etTracks •
- EtTracks2etCalib

Track seed

- nAssocTracksIsol
- **MvisEflow** •
- MassTrk3P •
- trFlightPathSig •
- dRmin •
- dRmax

April 2009

var etHad2etTracks

var etEM2etTracks

var etEM2etTracks

M. Wolter, A. Zemła, TauDiscriminant

Performance of new TauCommonPDRS

Preliminary results

		10-30 Gev eff=30%	30-60 Gev eff=30%
TauCommonPDERS	3 prong	2300 ± 100	1700 ±250
TauCommonLikelihood	3 prong	2100 ± 160	2700 ±390

• 3-prong performs well, but for higher p_{τ} still worse than TauCommonLikelihood

- Problems with 1-prong candidates not enough reference events
- Still plenty of work...

April 2009

M. Wolter, A. Zemła, TauDiscriminant

Future plans

- Finishing CommonPDERS optimization
- Common Neural Network might be worthwhile to include, since PDERS must be off during production due to high CPU and memory consumption.
- Use a new tool for that NetMaker is building a NN with number of hidden layers/nodes fitted to the complexity of the problem:

R. Sulej: http://www.ire.pw.edu.pl/~rsulej/NetMaker/ We plan to switch from *Cone4H1TopoJets* to "antiKt" jet definition. Since all the discriminants were trained against TopoJets, this requires verification and probably retraining.

Backup slides

April 2009

erformance of new Tau1p3pDiscriNN <u>rwidth2Trk3p</u> and <u>trFlightPathSig</u> removed.

Performance of new Tau1p3pEfficNN all variables used

Performance of new TauCommonPDRS

,						
		10-30 Gev eff=30%	30-60 Gev eff=30%			
auCommonPDERS	1 prong	410 ± 20	530 ± 90			
	3 prong	2200 ± 170	1600 ±250			

1-prong performance is not satisfactory - not enough reference events

Preliminary results

3-prong performs better, but also not as expected

		10 - 30 GeV		30 - 60 GeV		60 - 100 GeV	
Algorithm	Tracks	eff	rej	eff	rej	eff	rej
		[%]		[%]		[%]	
Tau1p3pDiscriCut	1 prong	36	260 ± 8	52	120 ± 3	38	330 ± 20
	3 prong	35	470 ± 20	61	30 ± 1	55	40 ± 1
Tau1p3pDiscriCutTMVA	1 prong	27	1100 ± 60	59	150 ± 4	66	170 ± 9
	3 prong	39	460 ± 20	59	40 ± 1	60	60 ± 1
Tau1p3pDiscriLL	1 prong	30	920 ± 50	30	1200 ± 110	30	1200 ± 150
	3 prong	30	1200 ± 70	30	490 ± 30	30	480 ± 40
Tau1p3pDiscriPDRS	1 prong	30	1400 ± 90	30	1100 ± 100	30	630 ± 60
	3 prong	30	1500 ± 90	30	690 ± 50	30	450 ± 40
Tau1p3pDiscriNN	1 prong	30	1900 ± 140	30	1700 ± 200	30	1100 ± 140
	3 prong	30	2800 ± 240	30	1700 ± 190	30	1600 ± 260
Tau1p3pEfficNN	1 prong	30	420 ± 20	30	1000 ± 90	30	2200 ± 360
	3 prong	30	850 ± 50	30	1100 ± 100	30	5100 ± 1300
TauCommonLikelihood	1 prong	30	740 ± 40	30	1700 ± 170	30	3400 ± 720
	3 prong	30	2100 ± 160	30	2700 ± 390	30	14900 ± 4800
TauLikelihood	1 prong	30	360 ± 10	30	1200 ± 130	30	4300 ± 920
	3 prong	30	610 ± 30	30	340 ± 20	30	530 ± 40
TauBDTAnalysis	1 prong	30	870 ± 50	30	3000 ± 380	30	3700 ± 770
	3 prong	30	4200 ± 450	30	3100 ± 480	30	5400 ± 1400
TauBDT	1 prong	30	300 ± 10	30	630 ± 120	30	1700 ± 270
	3 prong	30	570 ± 20	30	370 ± 20	40	1000 ± 120

Signal: W had tau nu, Background: J0, J1, J2, J3, J4

April 2009

M. Wolter, A. Zemła, TauDiscriminant