Tracking in the Tau Trigger

Sinead Farrington University of Oxford

15th April 2009

Overview

- Tracking algorithms in High Level Trigger
 - Comparison of SiTrk/IDscan/TRT
 - Performance in various samples and scenarios
- Cosmics

Tracking Algorithms in the Trigger

- Several tracking algorithms are available in the high level triggers
 - Level 2
 - IDscan
 - SiTrk
 - TRT only
 - Event Filter
 - Affected by which algorithm is run at L2 since ROI is seeded
 - Switches are available for EF parameters (not addressed here)
- Open questions for the slices to answer:
 - Should we run all level 2 algorithms?
 - If not, how do we choose which algorithm is best for us?
- There are no conclusions yet; I'll try to give you a tour of the issues as they are at the moment.

- IDscan
 - Based on space point histogramming
 - 1. Determine z position of interaction point
 - 2. Group all space points in the ROI into (η,ϕ) bins
 - 3. Combinatorial tracking only inside groups of space points that point back to the determined primary vertex position is performed
- The primary vertex finding does lead to some problems in pile-up scenarios as established by the tau RTT tests
 - $Z \rightarrow \tau \tau$ with pile-up from 25ns bunch crossing at L =2x10³³

• Effect of pile-up in IDscan (muons)

	No pileup	Pileup
Single μ 100 GeV	0.996 ± 0.002	0.958 ± 0.007
Single μ 10 GeV	0.978 ± 0.005	0.933 ± 0.010
Z->µµ, > 25 GeV	0.996 ± 0.002	0.951 ± 0.006

(Emily Nurse)

- Zfinder algorithm:
 - Creates all possible pairs of SpacePoints within a phi-slice in the ROI.
 - Each pair gives z at beam line (histogram filled).
 - Histo maximum is the z position of interaction.
- Retune the algorithm's histogramming parameters
 - Efficiency loss becomes 1-2% with pile-up instead of 4-5%

- SiTrk
 - 1. Combinatorial matching of space points in order to form full tracks.
 - 2. Knowledge of the interaction z vertex coordinate is not needed in this algorithm
 - 3. Pairs of space points from subset of silicon layers are formed
 - Matching criteria applied
 - 4. Pairs are then combined and extended to outer layers
 - (again matching criteria applied)

- TRT only
 - Only TRT space points are used
 - 1. Calculate a set of trajectories in ϕ -R(z) space
 - 2. Histogram of TRT space points filled in 2dimensions (φ and curvature)
 - 3. Maxima correspond to tracks
 - 4. Hits can then be added to tracks which pass the thresholds
- For the tau slice a TRT only menu has been implemented
- Considered to be a back-up scenario for cases when silicon is not running

Tracking Algorithms in Cosmics

- Extensive efficiency studies in cosmics illustrate no great differences between IDscan and SiTrk
 - But cosmics cannot tell us everything of course!
- Tracks with ≥ 4 spacepoints, |z0|<40cm,abs(θ-π/2)<0.58 (run 91862):

Tracking Algorithms in MC

- The tasks for slices are to:
 - Examine the performance carefully before data taking to decide whether to run both algorithms
 - Formulate a plan to evaluate performance on early data
- Tau track needs are different from other slices since:
 - Typically lower momentum tracks than most other slices (except B physics)
 - Tracks in multi-prong tau decays are extremely close together

Comparing Algorithms

- Compare IDSCAN and SiTrk for tau decays into one and three prongs
 - W→τν (5107) Tau Trigger Performance ntuple 12, Athena 14.2.25.5, 14TeV sample
 - Number of EF tracks distribution very similar for the two algorithms, slightly worse performance for SiTrk One prong
 Three prong

Comparing Algorithms

- L2 and EF combined efficiency per track as a function of track pt slightly lower for SiTrk
- Efficiency measured with respect to truth tracks each track is matched by delta R requirement to a truth track

One prong

Three prong

Comparing Algorithms

 L2 and EF combined efficiency as a function of track eta slightly lower for SiTrk

One prong

Three prong

Sinead Farrington, University of Oxford

Tracks from Fake taus

- Single jet pythia J0 sample (5009) used to test fake rates ٠
 - Suggests fake rate from IDscan higher than SiTrk •
 - (but recall efficiency is higher for IDscan also) •

tt

- Efficiency in tt has been checked as a proxy to pile-up
 - 5200 sample, TTP12, 14TeV
 - SiTrk appears to cope worse at lower pt in the ttbar environment

TRT only algorithm

- The TRT provides low resolution η measurements and so matching to truth using delta R is not feasible
 - Matched using delta Phi instead, though this is a poorer matching requirement
- Shows that TRT algorithm gives reasonable performance
 - Fake rates need to be checked
 - Bear in mind that this is a fall-back scenario for use when silicon is not running

Summary of the Algorithm Studies

- Algorithm studies are a work in progress
 - Need to do a complete study of all tau trigger thresholds
 - Examine performance in all physics samples
 - Check performance with displaced beam spot
 - Use full sample size
- Study results together with other slices who are working on the same questions, each with slightly different tracking "needs"
- When data comes, can see more clearly:
 - Real occupancies
 - Pile-up effects
 - Effect of misalignments
- Should be ready to examine each algorithm
 - Some of this machinery is already there

Cosmic Event Displays

- Events in the tau trigger (tauNoCut) where we find that
 - Tau trigger was fired
 - Track is present!

Sinead Farrington, University of Oxford

Cosmic Event Displays

Sinead Farrington, University of Oxford