

Analysis with mcO8 datasets

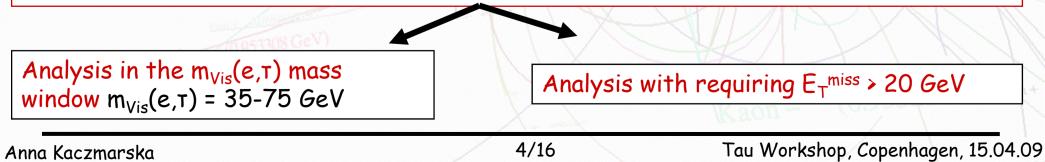
- Analysis first done with release 13 and csc data -> 14 TeV, 100 pb⁻¹ scenario
 - documented in ATL-PHYS-INT-2009-019
- Redo this analysis on release 14 new simulation and reconstruction samples and observe an impact of 14->10 TeV centre-of-mass energy change
 - Analysis code rewritten in order to run on AODs
 - many thanks to Thomas Koffas and Lukasz Janyst
- Focus on aspects not studied in ATL-PHYS-INT-2009-019
 - trigger efficiencies
 - forward electrons, conversions...
- Revisit/optimize cuts used in the csc analysis
- Understand/study problems found during csc data analysis

Used mcO8 samples

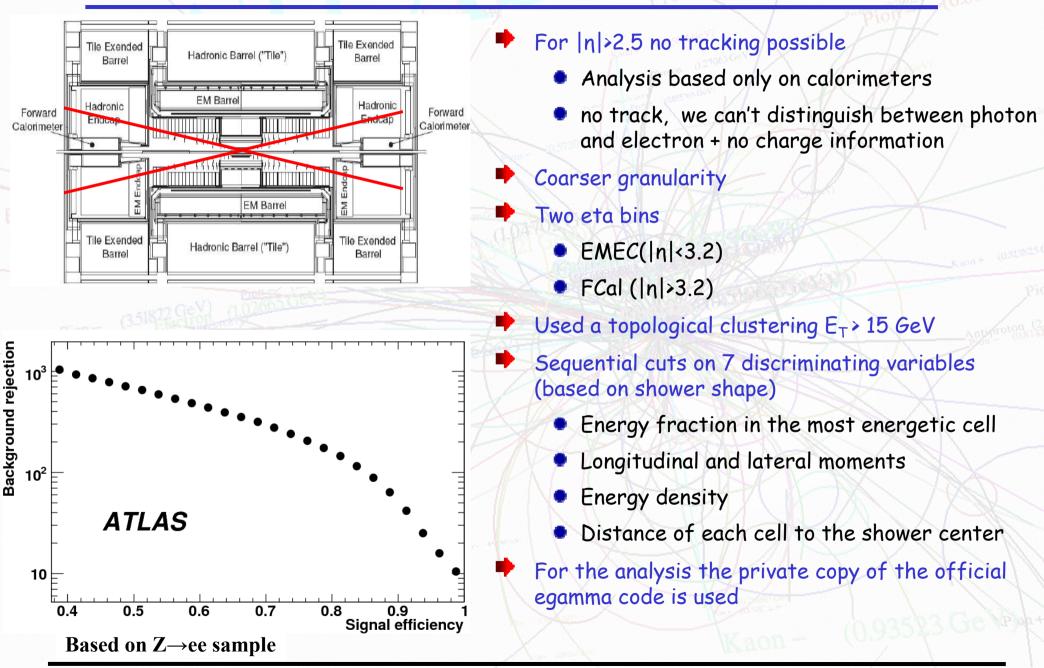
Official AOD 14.2.20 samples		Pion
majority with HEC quadrant off (r541) but some wi	th this regi	ion on (r604)
 LO xsections used so far 		ugaa = ugad
should change to NLO where available in next s	tep	xsec = used xsections, after filter
mc08.106052.PythiaZtautau.recon.AOD.e347_s462_r541	xsec :1.13*1	10 ³ pb events: 1.4*10 ⁵
mc08.106052.PythiaZtautau.recon.AOD.e347_s462_r604		events : $9*10^4$
mc08.106050.PythiaZee_1Lepton.recon.AOD.e347_s462_r541	xsec : 1.09*	*10 ³ pb events: 8*10 ⁵
mc08.106050.PythiaZee_1Lepton.recon.AOD.e347_s462_r604		events: $10*10^{5}$
mc08.106022.PythiaWtaunu_1Lepton.recon.AOD.e352_s462_r5	41 xsec :3.6*	⁴ 10 ³ pb events: 5.4*10 ⁵
mc08.106020.PythiaWenu_1Lepton.recon.AOD.e352_s462_r541	xsec :10.3	*10³ pb events : 6*10 ⁵
mc08.106020.PythiaWenu_1Lepton.recon.AOD.e352_s462_r604		events : 8*10 ⁵
mc08.105200.T1_McAtNlo_Jimmy.recon.AOD.e357_s462_r541	xsec :2.06*	$*10^2$ events: $4*10^5$
mc08.106054.PythiaZee_Mll20to60_1Lepton.recon.AOD.e379_s	462 <u>r635</u>	
	xsec:6.63'	*10 ² events: 5*10 ⁴
mc08.105802.JF17_pythia_jet_filter.recon.AOD.e347_s462_r6	604(617)	

Anna Kaczmarska

ion


Selection cuts

Basic selection


• *Tight* electron with $p_T(e) = 15-35$ GeV

[p_T(e)=15-40 GeV used for csc studies]

- Medium both-seeds tau, (NN), with $p_T(T) = 20 60 \text{ GeV}$
 - \cdot candidate has to be separated from already accepted electron by $\Delta R \text{>} 0.2$
 - veto on electon or muon using flags from tau object
 - [new] in addition 1P candidates with no reconstructed π^0 cluster are vetoed if E/p of the overlapping egamma object is > 0.9 or tau sumEtCellsLArOverLeadTrackPt > 0.9
- veto on p_T> 8 GeV other ele medium / loose (outside accepted ele/tau ROI) and any muon from Staco collection
- [new] veto forward electrons
 - \cdot find forward electron, try to reconstruct invariant mass with previously accepted electron and see if it is not close Z mass
- [new] veto loose photons
- $m_T(e, E_T^{miss}) < 35 GeV$
- isolation of electron in calorimeter and tracker

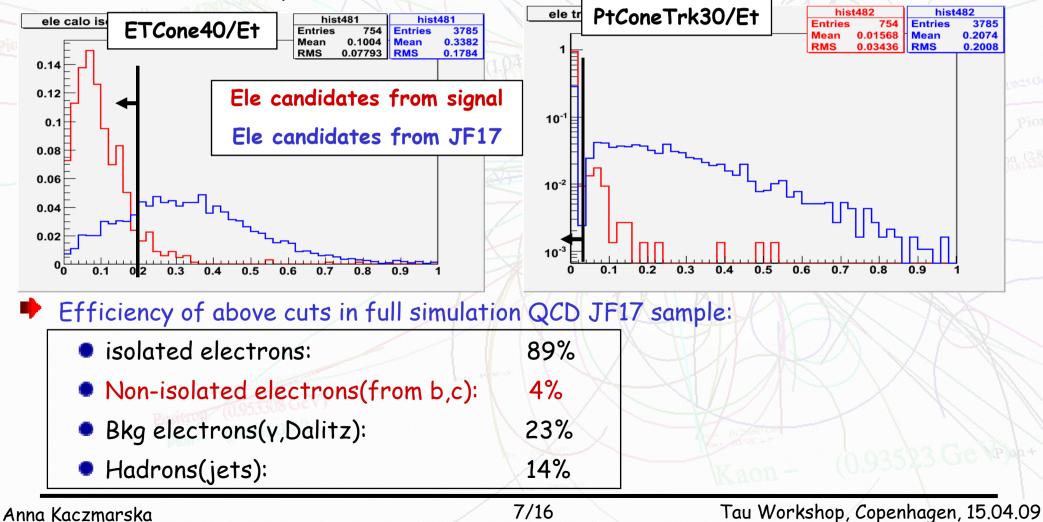
Identification of forward electrons

Anna Kaczmarska

Tau Workshop, Copenhagen, 15.04.09

Electrons in QCD samples

Electrons from τ 's in the Z $\rightarrow \tau\tau$ process are well isolated but:

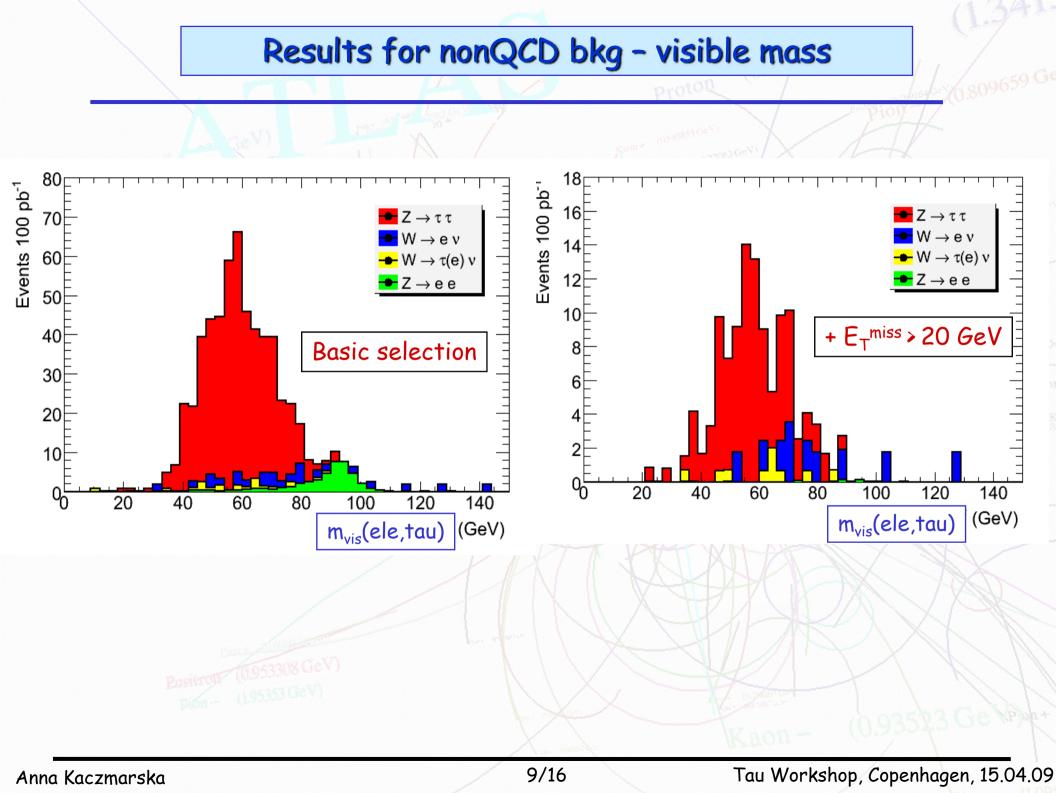

- Non-isolated electrons from semileptonic heavy quarks decays and background electrons from conversions and Dalitz decays mimic isolated ele of the signal
- Particles passing tight ele p_T=15-35 GeV and |η|<2.5 cuts in QCD full simulation dijet samples (r604):

	QCD J1	QCD J2	QCD J3	Kaon + (0.8138250
hadrons	46%	22%	10%	Pio
Bkg ele(y,Dalitz)	15%	8%	7%	Anthrotom 1929
Non-iso ele(b,c)	39%	70%	83%	

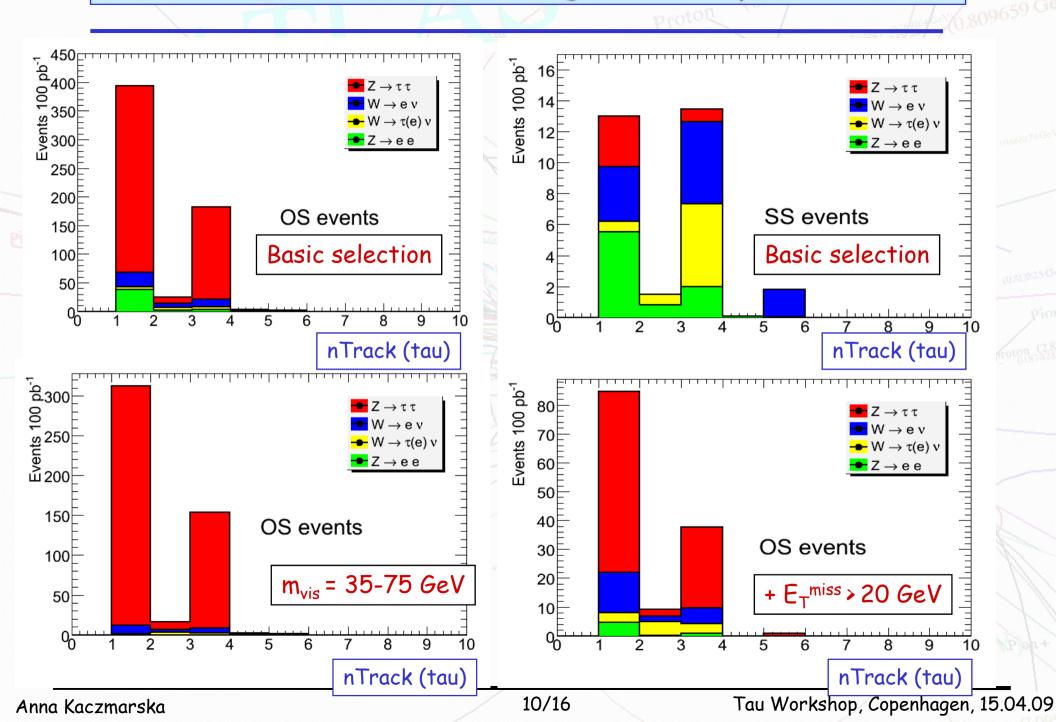
- Main source of electrons in QCD background electrons from semileptonic decays of heavy quarks
 - dedicated cuts on isolation in calo and tracker needed to suppress bkg from those electrons

Electrons in QCD samples - isolation cuts

- Isolation in calorimeter: requires energy in the isolation cone ΔR=0.4, after subtracting electron E to contain < 20% of the ET of the electron candidate.</p>
- Isolation in tracker: scalar sum of p_T's of all tracks with p_T>1 GeV in 0.03<ΔR<0.3 around electron track. To be less sensitive to tracks from conversions only tracks with hits in the B-layer are considered.</p>



Results for nonQCD background

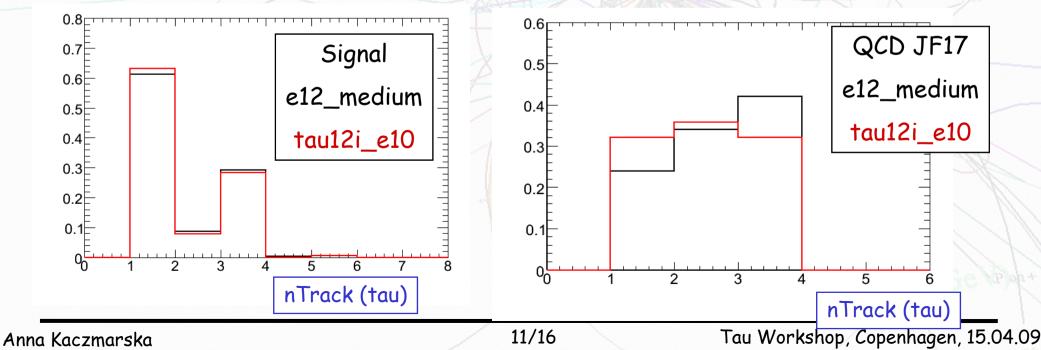

	50009 NST000700000		144				
Events in 100 pb^{-1}	$Z \to \tau \tau$	$Z \rightarrow ee$	$W \rightarrow \tau \nu \rightarrow lep \nu \nu$	$W \rightarrow e \nu$	$t\bar{t}$	$Z \rightarrow ee$	
		$\sqrt{\hat{s}} > 60 { m ~GeV}$				$\sqrt{\hat{s}}$ =20-60 GeV	
e-tight, p_T =15-35 GeV	5012	30147	26214	257438	1702	8604	1
τ -medium, p_T =20-60 GeV	715	240	100	715	102	46	p101- (0.668)7
Veto mediumEle	685	113	94	674	62	26	/
Veto looseEle	668	102	92	667	51	25	/
Veto frwdEle	668	89	92	667	51	25	
Veto loosePho	657	78	90	659	42	21	
$m_T^{e,E_T^{miss}} < 35 \text{ GeV}$	616	71	56	125	10	18	Kaon+ (0.8138
ele iso	543	62	47	114	7	17	
OS events	500	43	15	45	4	3	C /D-5
OS events, ntrack=1,3	487	40	10	37	4	3	S/B=5
Basic sel + $E_T^{miss} > 20 \text{ GeV}$							1
OS events	93	0	7	21	3	0	C/D-1
OS events, ntrack=1,3	90	0	4	15	3	0	S/B=4
Basic sel + $m^{e,\tau}$ =35-75 GeV							
OS events	457	5	11	21	2	2	
OS events, ntrack=1,3	445	5	6	19	2	2	an
	//			M	11		5/B=13

Much better S/B(nonQCD) obtained than for csc data analysis

Anna Kaczmarska

Results for nonQCD bkg - ntrack spectra

Trigger studies (1)


Trigger efficiencies wrt off-line - signal sample

r541 - HEC quadrant off + electron trigger problems (L2 tracking is not correctly accounting for beam spot displacement)

nic	e10med	e12med	e15med	e20loose	e25loose	tau12_e10	tau16i_e10
Trig. Eff.	88%	88%	85%	54%	36%	69%	62%

Ping - (3.518

Tau12_e10 worse than e15med but better than e20loose

Trigger studies (2)

Trigger efficiencies wrt off-line - signal sample

r541 - HEC quadrant off + electron trigger problems (L2 tracking is not correctly accounting for beamspot displacement)

	10	D X		Pron-	XI	V IVX		-
Pic	e10med	e12med	e15med	e20loose	e25loose	tau12_e10	tau16i_e10	
Trig. Ef	f. 88%	88%	85%	54%	36%	69%	62%	(3825) Pic

on- (3.51872 Gev)

r604 - HEC quadrant on + fix of electron trigger problem

	e10med	e12med	e15med	e20loose	e25loose	tau12_e10	tau16i_e10
Trig. Eff.	98%	98%	96%	63%	33%	84%	79%
	Ріби- (1922.			he star	K	(0 (0	93523 Ge VP

Angular correlations

	instead of using stand using angular correlation		•	T ^{miss}) we tried	Ryan's	prop	osition of	
			140			Z –	→ tau tau	
			120		ווו ר 🛛			
COS($\phi_{ele} - \phi_{ETmiss}$) + cos ($\varphi_{\tau} - \varphi_{ET}$	miss) 100	> 0.15	」 ↓↓↓	W -	\rightarrow e nu	
			80	<u>-</u>		14/		
			60	-		VV -	\rightarrow tau(e) nu	
			40	- - 				
			20	₩. д.	<u> </u>		Kao	
			0	╴╙╣║╩┟┚╟╼╢┉╝║╖┎╢		-		
i	Events in 100 pb^{-1}	$Z \rightarrow \tau \tau$	$Z \rightarrow ee$	$\begin{array}{cccc} 2 & -1.5 & -1 & -0.5 \\ \hline W \rightarrow \tau \nu \rightarrow lep \nu \nu \end{array}$	0 0.8 $W \rightarrow e \nu$	$\frac{1}{t\overline{t}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	╕ /°
Pic	Events in 100 pb	$Z \rightarrow 11$	$\sqrt{\hat{s}} > 60 \text{ GeV}$	$W \rightarrow T \nu \rightarrow t e p \nu \nu$	$w \rightarrow e\nu$		$\sqrt{\hat{s}} = 20-60 \text{ GeV}$	proton Ch
	e-tight, p_T =15-35 GeV	5012	30147	26214	257304	1702	8604	1
	τ -medium, p_T =20-60 GeV	715	240	100	689	102	46	
	Veto mediumEle	685	113	94	652	62	26	
	Veto looseEle	668	102	92	645	51	25	
	Veto frwdEle	668	89	92	645	51	25	
	Veto loosePho	657	78	90	637	42	21	
	Phi corr > 0,15	620	71	34	86	10	18	2
	ele iso	548	62	34	78	7	17	×
	OS events	1% ⁵⁰⁵	43	-2% ¹²	30	-38%	3	N-
	OS events, ntrack=1,3	4 94	40	-2 /0 8	23	-30 /0	3	
	Basic sel $+ E_T^{miss} > 20 \text{ GeV}$							\mathcal{N}
	OS events	106	0	6	17	3	0	(X)
	OS events, ntrack=1,3	102	0	2	11	3	0	Plan+
	Basic sel + $m^{e,\tau}$ =35-75 GeV							
	OS events	467	5	9	15	2	2	
Anna Ka	OS events, ntrack=1,3	457	5	5	13	2	2	5.04.09

First look at QCD background

Running on ATLFAST2 QCD samples in GRID

- a68 samples with duplicated events problem
- not enough statistics to perform analysis -> parameterization is necessary

COT U XAT	1 Vicen	< 17KII	/ I.\/II/	/ IZ KA X	1	_
Events in 100 pb^{-1}	all	5009	5010	5011	5012	1
(weight = 67303.23493)						
e-tight, $p_T = 15-35 \text{ GeV}$	4493235	201909	2739528	1464300	87497	8138
τ -medium, p_T =20-60 GeV	33569	0	8185	23502	1881	
Veto mediumEle	31331	0	8185	21263	1881	ton
Veto looseEle	30883	0	8185	20816	1881	
Veto frwdEle	30883	0	8185	20816	1881	
Veto loosePho	30883	0	8185	20816	1881	
$m_T^{e, E_T^{miss}} < 35 \text{ GeV}$	25378	0	5457	19920	0	-
OS events	4519	0	2728	1790	0	/
OS events, ntrack=1,3	223	0	0	223	0	

Electrons in QCD samples

		Full :	simulation			
	All	5009	5010	5011	5012	
ele tight pt (15-35) GeV	5.2*106	-	(3.4±0.9)*10 ⁶	(1.8±0.2)*10 ⁶	(11±1.3)*10 ⁴	0.668179
Pion - 2 4021 Option -		A	tlfast 2	LARTA		

	All	5009	5010	5011	5012	8138250
ele tight pt (15-35) GeV	4.5*106	2.0*10 ⁵	2.7*106	1.5*106	8.7*10 ⁴	Pior

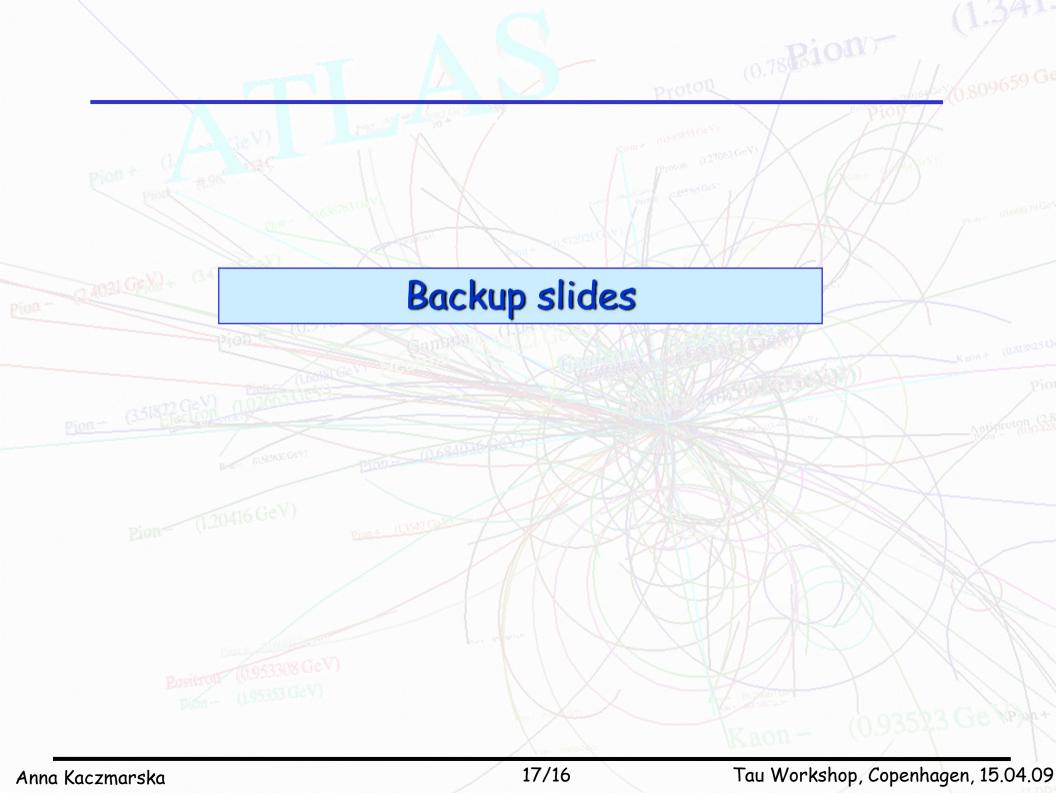
Particles passing medium ele p_T=15-35 GeV and |η|<2.5 cuts in QCD full and atlfast2 dijet samples:</p>

	QCD J2	QCD J3
	<mark>full/</mark> atlfast2	full/atlfast2
hadrons	72% / 34%	<mark>62%</mark> /32%
Bkg ele(y,Dalitz)	16% /15%	<mark>8%</mark> /15%
Non-iso ele(b,c)	12% / 51%	<mark>30% /</mark> 53%
	15/1/	Tou Manles

Anna Kaczmarska

Tau Workshop, Copenhagen, 15.04.09

Short term plans


Estimation of QCD background

run on a84 samples when available

- check if parameterization at least for electrons needed
- run on lepton filtered QCD full simulation samples
- Track isolation cuts try to use official TrackIsolationTool
- Move from r541 to r635/r641/r642 (without problem with HEC and electron trigger + without duplication bug)

Continue analysis towards cross-section and tau efficiency measurement

 try to use common tool for benchmark analysis for Z xsection measurement

Check on W+jet samples

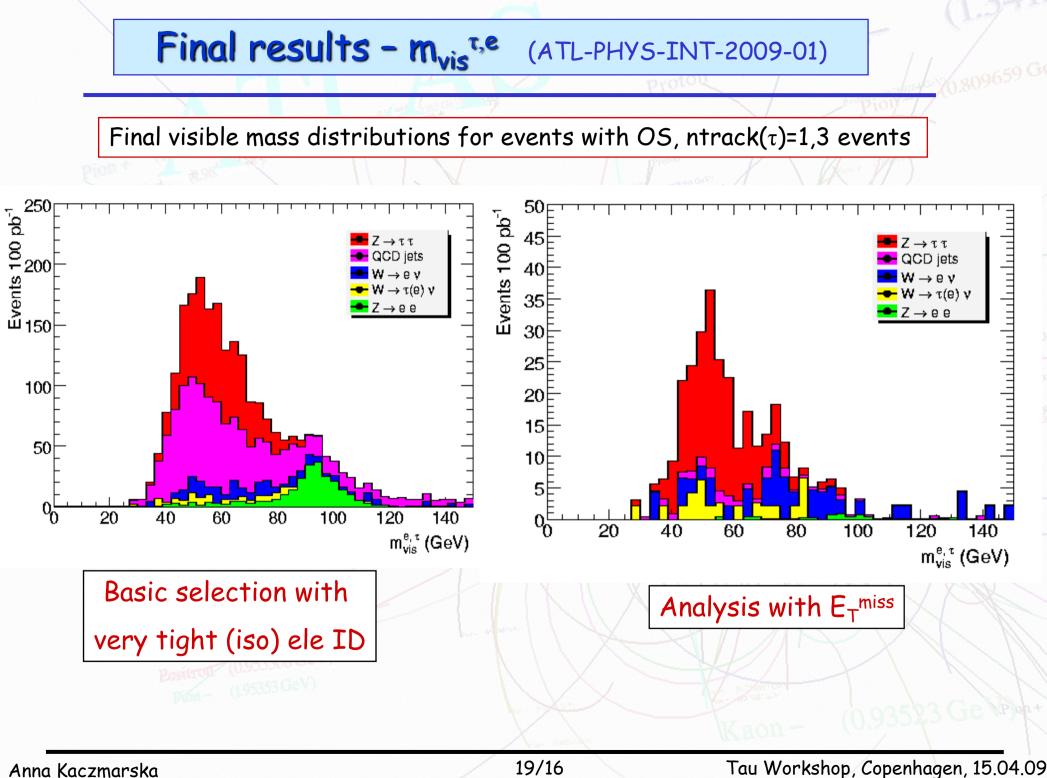
🕈 W->tau + jet

mc08.106042.PythiaWtaunuJet_Ptcut.recon.AOD.e352_s462_r541

xsection 5.94*10³ pb

Basic selection, OS, ntrack=1,3: 17 events for 100pb-1

To compare with W->taunu: 13 events for 100pb-1


🏓 W->e + jet

mc08.106040.PythiaWenuJet_Ptcut.recon.AOD.e352_s462_r541

xsection 5.94*10³ pb

Basic selection, OS, ntrack=1,3: 37 events for 100pb⁻¹

To compare with W->e nu: 49 events for 100pb⁻¹

Tau Workshop, Copenhagen, 15.04.09

Motivation for $Z \rightarrow \tau \tau$ channel

P $Z \rightarrow \tau \tau$ channel will provide statistically significant sample of τ leptons for 100 pb⁻¹

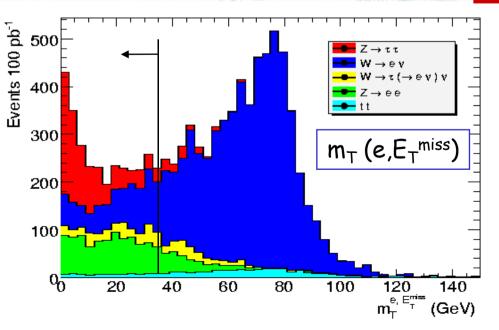
- measurement of the xsection and the τ -ID efficiency
- selected by lepton trigger -> unbiased sample of τ (had) decays
 - measurement of the τ trigger efficiencies
- detector calibration -> E_{T}^{miss} and τ -jet energy scale determination
- Different then Z->ee,µµ channels.
 - overwhelming QCD bkg, low momenta of visible τ-decays products

Studied for the Tau CSC note and ATL-COM-PHYS-2008-127 (D. Cavalli, C. Pizio)

- calo-based algorithm used for τ reconstruction
- analysis of (e/μ,τ-had) channels
 - determination of the τ -jet energy scale and E_T^{miss} scale
- clean sample obtained
 - ~500 signal evts + 10% bkg from $W \rightarrow lv + 5\%$ bkg from QCD
- In presented analysis we concentrate on (e, τ -had) channel
 - track-based algorithm used for τ reconstruction
 - analysis tuned to obtain high statistics for signal
 - xsection and τ -ID measurement for 100 pb⁻¹

Analysis with csc data - reminder

Documented in ATL-PHYS-INT-2009-019

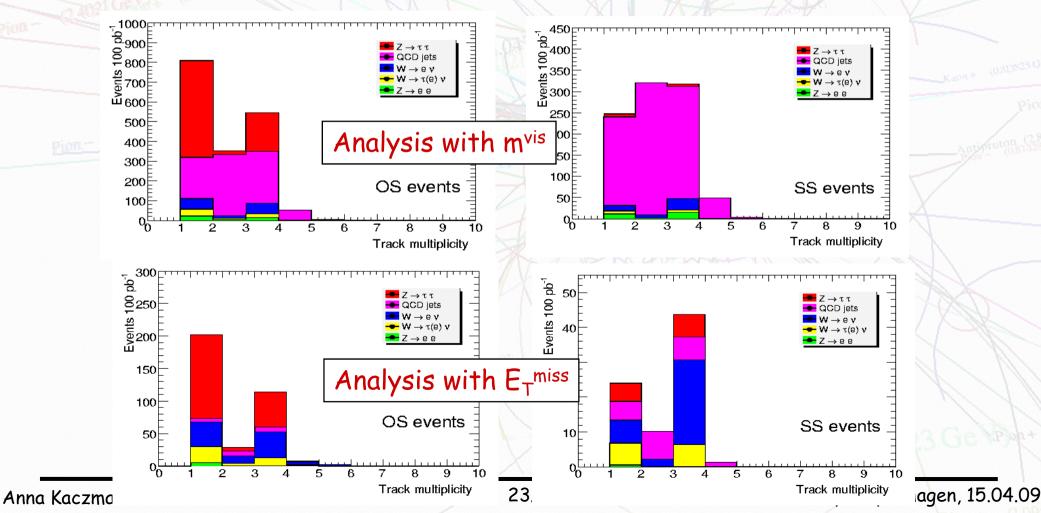

- Analysis done with release 13 and csc data -> 14 TeV, 100 pb⁻¹ scenario
- Signal and nonQCD bkg full simulation (50-614k events in each channel), QCD bkg from the non-official production with Atlfast-I (~8×10⁷ events)
- Results without trigger efficiencies (trigger info not available in analyzed CBNTs)
 - CBNT based analysis
 - Basic selection:
 - *Tight* electron with $p_T(e) > 15 \text{ GeV}$
 - ID *medium* τ , (tau1p3p, NN), with $p_T(\tau) > 20$ GeV
 - Veto events with *loose* e $p_T(e) > 8$ GeV or any μ with $\Delta R > 0.3$ from identified τ or e
 - $m_T(e, E_T^{miss}) < 35 \text{ GeV}$
 - Electron and τ to be separated, with $\Delta R(e,\tau) > 1.5$
 - p_T limited to $p_T(e) = 15$ 40 GeV and $p_T(\tau) = 20 60$ GeV
 - After the basic selection, two possible scenarios:
 - Analysis in the $m_{Vis}(e,\tau)$ mass window $m_{Vis}(e,\tau) = 35-75$ GeV
 - Analysis with requiring E_T^{miss} > 20 GeV

Analysis with csc data (ATL-PHYS-INT-2009-01)

Some changes/improvements done in the note reviewing phase for COM->INT

In addition sample W $\rightarrow \tau v$ with $\tau \rightarrow e$ studied and found to be significant source of the non-QCD background

	C Flore			N	- 1 / / / /	ALL	1	1.1
Events in 100 pb ⁻¹	$Z \rightarrow \tau \tau$	$W \rightarrow ev$	$W \rightarrow \tau_e v$	$Z \rightarrow ee$	tī	QCD	QCD	S/B
						(true e)	(fake e)	
		Basic	tinematical	selection				
Basic selection +								
$p_T^e = 15 - 40 \text{ GeV}$								
Ele isolation								
OS, $\tau_{Ntrack}=1,3$	745 ± 30	190 ± 20	80 ± 15	250 ± 5	10 ± 1	260	890	0.44
$m^{e,\tau_{had}}$ =35-75 GeV	685 ± 25	105 ± 15	55 ± 10	35 ± 3	5 ± 1	185 ± 10	600 ± 1	0.70
$E_T^{miss} > 20 \text{ GeV}$	185 ± 15	75 ± 10	40 ± 10	5 ± 1	10 ± 1	15 ± 5	5 ± 1	1.23
	Constrained and the second	TO CALL TO A DECK OF A DEC		W/ WAY AND THE		No. 1 Acres 10		1



The W $\rightarrow \tau v$ with $\tau \rightarrow e$ background, although having much smaller cross-section than for W $\rightarrow ev$ is significant as the cut on $m_T(e, E_T^{miss})$ is not as efficient for that process as for W $\rightarrow ev$ events.

Analysis with csc data (ATL-PHYS-INT-2009-01)

• Studies of some features postponed to mcO8 analysis: sharing between 1P and 3P for the W \rightarrow ev bkg different for OS and SS events

- this effect is statistically significant.
- very likely fake tau's in SS sample are originating dominantly from gluon jet (larger tracks multiplicity), while in the OS sample from quark jet (lower tracks multiplicity)

