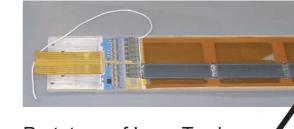

Measurement of CP violation in B decays

The aim of the LHCb experiment is to fully investigate CP violation in the B_d and B_s systems, and to possibly reveal new physics beyond the Standard model. The key detector requirements are:

- efficient trigger for many B-decay topologies
 - excellent particle identification for π -K separation in a wide momentum range
 - good decay-time resolution in particular to resolve fast B_s oscillations
 - good mass resolution to efficiently suppress background

Trigger System

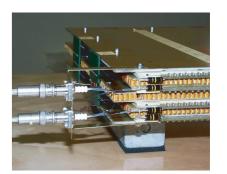
The Trigger System consists of 4 levels, designed to be very flexible and robust.



Tracking System

The Tracking System is split into Inner (around beampipe) and Outer Tracker. Tracks are reconstructed with a momentum resolution of $\Delta p/p = 0.3\%$ -0.5% for momenta between 5 GeV and 200 GeV. The mass resolution is e.g. ~15 MeV for B -> $\pi\pi$ events.

'Straw Tubes'



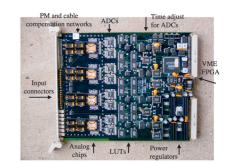
Prototype of Inner Tracker
'Silicon Detector' with
Readout Chips

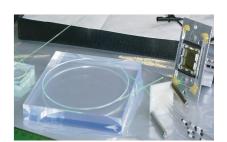
Muon System

The Muon System consists of MWPCs in the region of high, and of RPCs in the region of lower occupancy. It provides information for the first level (L0) high-Pt trigger.

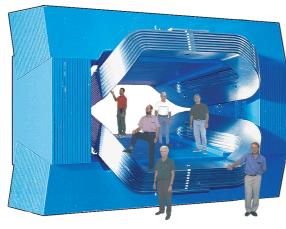
Prototype of 'Multi-Wire Proportional Chamber'

Calorimeters

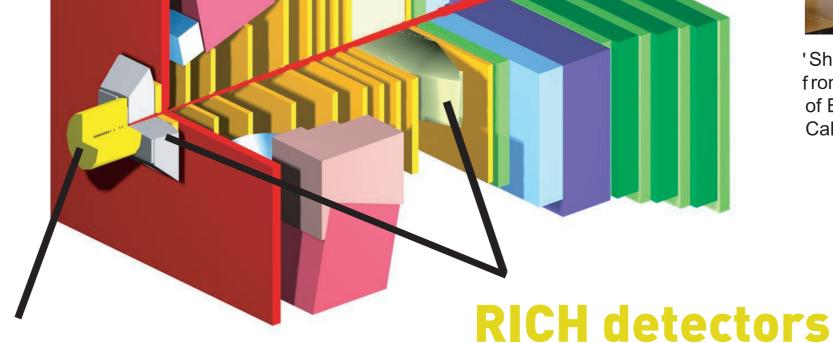

The Calorimeter System consists of three sub-detectors (Preshower, Electromagnetic and Hadronic Calorimeter) that provide information for the first trigger level (L0) within 25 ns. The energy resolution of ECAL and HCAL are $10\% / \sqrt{E(GeV)} \oplus 1.5\%$ and $80\% / \sqrt{E(GeV)} \oplus 10\%$, respectively.


'Shashlik modules' from pre-production of Electromagnetic Calorimeter

Module 0 production of 'Iron/Scintillator Tile' Hadron Calorimeter

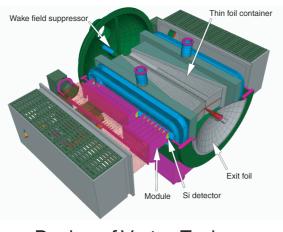


Prototype of ECAL and HCAL 40 MHz Readout and L0 Electronics



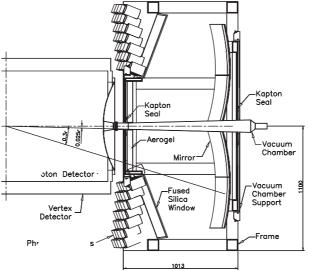
Prototype of Scintillating tile with single fibre readout of 'Lead/Scintillator'
Preshower Detector

Model of Warm Dipole with Aluminium Conductor and 4 Tm integrated field



Vertex Locator

The Vertex Locator provides data to the second trigger level (L1). It surrounds the interaction point and consists of 25 r- and ϕ -measuring silicon stations that are housed inside a vacuum tank. The stations are retractable from the beam during injection. A primary vertex resolution of 40 microns is expected to be achieved.


Prototype of 300 micron n-on-n Silicon Wafer with Readout Electronics

Design of Vertex Tank

Two RICH Detectors provide particle identification in the momentum range of 3-100 GeV.

This guarantees excellent B flavour tagging with kaons, and efficient background suppression for two-body B-decays.

Mechanical Design of RICH1 with combined Aerogel/Gas Radiators

Prototype of 'Hybrid Photo Detector' with 61 Silicon Pixels Readout