

F.Forti, INFN and University, Pisa Flavour Physics in the LHC Era CERN, 9-11/10/2006

Outline

Introduction and brief history
The SuperB Project Process
The Physics Case
The Accelerator
The Detector
Conclusion

Introduction

Flavour physics is rich and promises sensitivity to NP

□ Physics case established and clear,

... but large statistics (50-100 ab⁻¹) is needed

Increasing the current of PEP-II/KEKB is expensive

- wall power and detector background explosion \Box effective limitation around 5x10³⁵
- Linear SuperB concept presented at Hawaii workshop in March 2005 – exploit ILC R&D

Subsequently went through three phases

- 5 GeV damping rings with high current and beam extraction, beam compression and final focus
- 2 GeV damping rings with high currents, beam extraction and linacs, beam compression and final focus
- 4 and 7 GeV DR with moderate currents with beam compression and final focus
- By now, no linear part survives, although ILC synergy remains

The SuperB Process

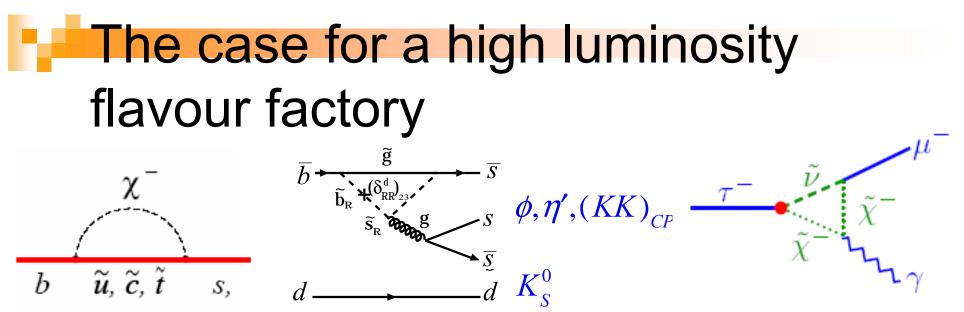
International SuperB Study Group on

□ Physics case, Machine, Detector

 International steering committee established, chaired by M.A.Giorgi. Members from

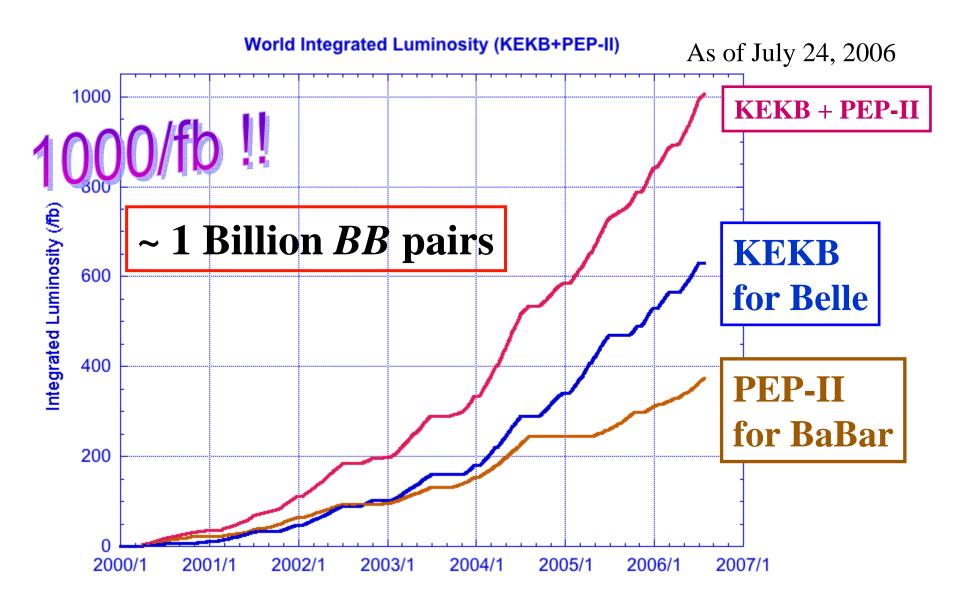
□ Canada, France, Germany, Italy, Russia, Spain, UK, US

□ regular interaction with Japan, although not yet formalized

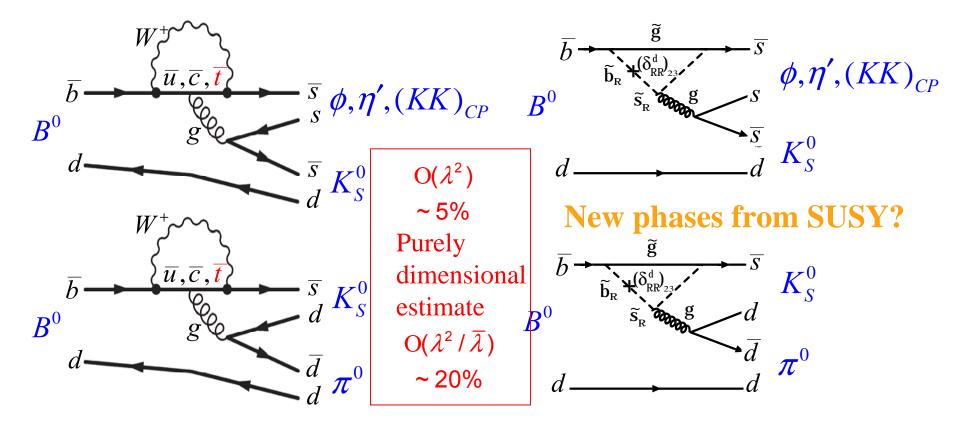

Regular workshops

- Three workshop held (2 in Frascati, 1 in SLAC)
- □ SuperB Meeting at Daresbury
- Next workshop in Monteporzio Catone (Rome) on Nov 13-15,2006.

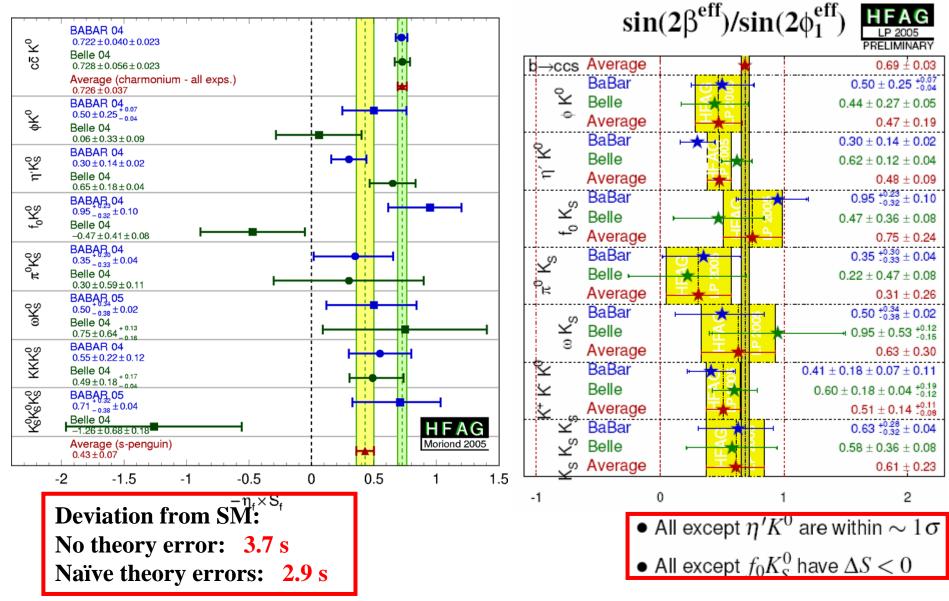
Conceptual Design Report


- □ In preparation, to be delivered by February 20, 2007
- Describe Physics case, Accelerator, Detector, including costing
- □ International review in 2007

Physics case


- Prejudice: if there is New Physics at the TeV scale it must have a flavor/CP structure
- New heavy quanta can be detected through precision measurement of processes involving loop diagrams
- Statistics of O(50 ab⁻¹) is necessary to reduce the experimental error below the theoretical uncertainty for the most sensitive analyses
- Physics reach is complementary to LHC-LHCb:
 - □ many rare decays are not accessible at LHC;
 - sensitivity to off-diagonal term of squark mixing matrix,
 - \Box test of LFV in τ decays

What's new: Integrated Luminosity



$sin2\beta$ and loops

In SM interference between *B* mixing, *K* mixing and Penguin $b \rightarrow ssss$ or $b \rightarrow sdd$ gives the same $e^{-2\iota\beta}$ as in tree process $b \rightarrow ccs$. However loops can also be sensitive to New Physics!

ICHEP06: β from $b \rightarrow s$ Penguins **Preliminary** $\sin(2\beta^{\text{eff}}) \equiv \sin(2\phi_1^{\text{eff}})$

PRELIMINARY

 $0.12 \pm 0.31 \pm 0.10$

 $0.50 \pm 0.21 \pm 0.06$

 $0.55 \pm 0.11 \pm 0.02$

 $0.64 \pm 0.10 \pm 0.04$

 $0.66 \pm 0.26 \pm 0.08$

 $0.30 \pm 0.32 \pm 0.08$

 $0.33 \pm 0.26 \pm 0.04$

 $0.33 \pm 0.35 \pm 0.08$

 $0.17 \pm 0.52 \pm 0.26$

 $0.11 \pm 0.46 \pm 0.07$

 $0.18 \pm 0.23 \pm 0.11$

 $-0.84 \pm 0.71 \pm 0.08$

 $0.41 \pm 0.18 \pm 0.07 \pm 0.11$ $0.68 \pm 0.15 \pm 0.03 ^{+0.21}_{-0.13}$

1

 0.68 ± 0.03

 0.39 ± 0.18

 0.59 ± 0.08

 0.51 ± 0.21

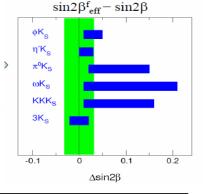
 0.33 ± 0.21

 0.17 ± 0.58 $0.62^{+0.25}_{-0.30} \pm 0.02$

 0.48 ± 0.24

 0.62 ± 0.23

 0.42 ± 0.17


-0.84 ± 0.71

 $0.58 \pm 0.13 \substack{+0.12 \\ -0.09}$

2

in all of 9 modes

•	
	Theory tends to predict
	positive shifts
	(originating from phase
	in Vts)

some of recent OCDF estimates

Naïve average of all $b \rightarrow s$ modes $\sin 2\beta^{\rm eff} = 0.52 \pm 0.05$ 2.6 σ deviation between penguin and tree $(b \rightarrow s) \quad (b \rightarrow c)$

More statistics crucial for mode-by-mode studies!

World Average

BaBar

BaBar

Belle

BaBar

Belle

Average

Average

Average

Average

Average

BaBar Q2B

Average

-1

0

BaBar

Belle

BaBar

BaBar

BaBar

Belle

BaBar

Ave

Belle

Belle

Average

Average

Belle

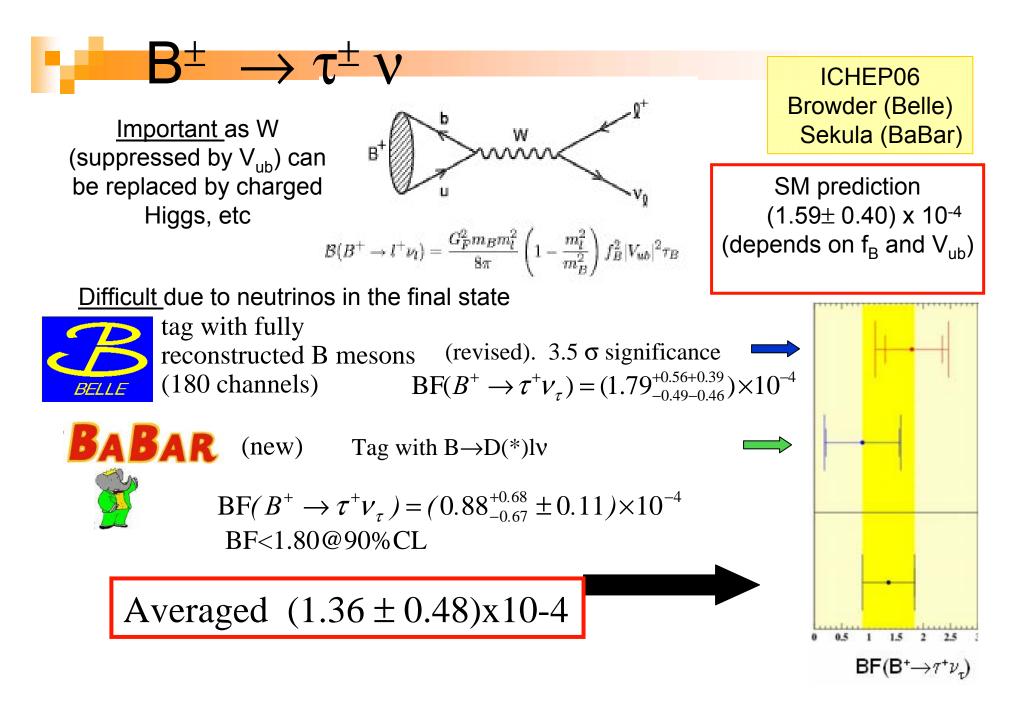
b→ccs

Ŷ

 \mathbf{x}_{s}

Ł

З

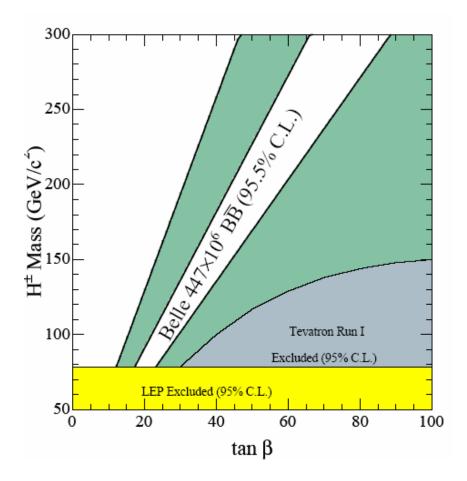

Ŷ

Š

Y S

Š.

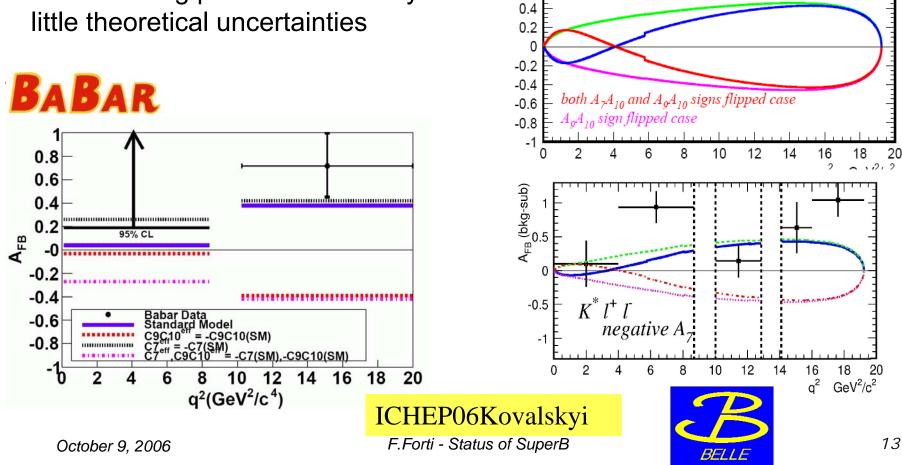
-2


ICHEP06 Barlow

Limits on e.g. 2 Higgs doublet model: W.S.Hou, PRD 48, 2342 (1993)

SM prediction enhanced/reduced by factor *r_H*

$$r_H = \left(1 - \frac{m_B^2}{m_H^2} \tan^2\beta\right)^2$$


Or: Within the SM, use the value of BF(B⁺ $\rightarrow \tau^{+}\nu_{\tau}$) to give a measurement of f_B

ll pair forward-backward asymmetry vs q2 is sensitive to NP in the loop, altering the helicity structure

zero crossing predicted with very little theoretical uncertainties

γ, Ζ

un

W

b

 \overline{q}

ΕB

₹0.8

0.6

 1^{-}

22

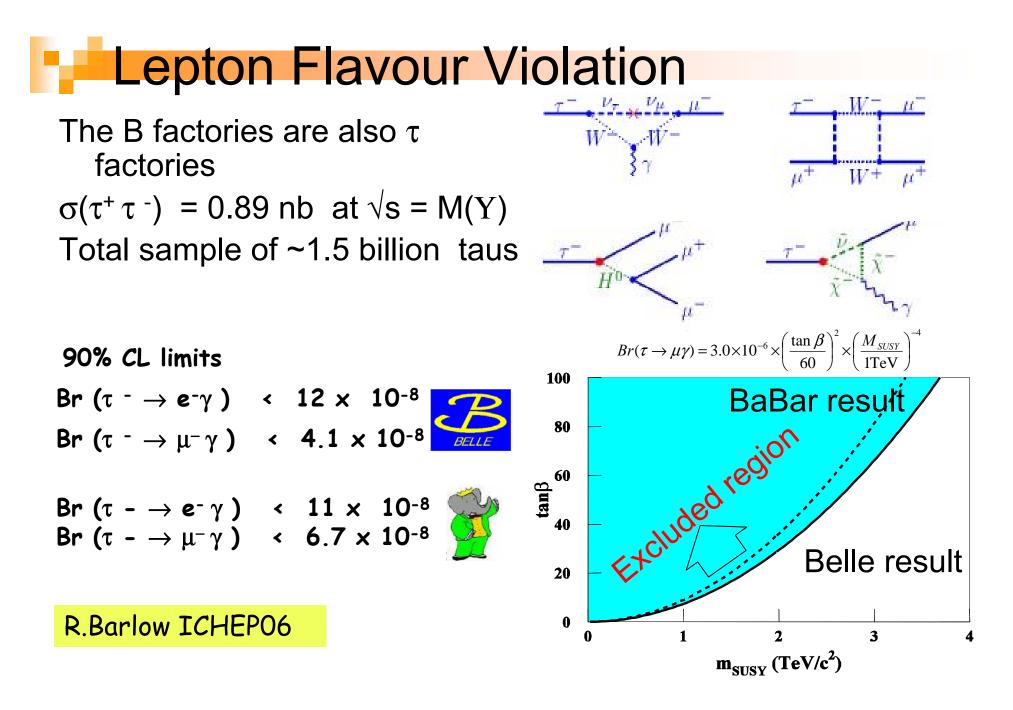
S

 \overline{q}

W

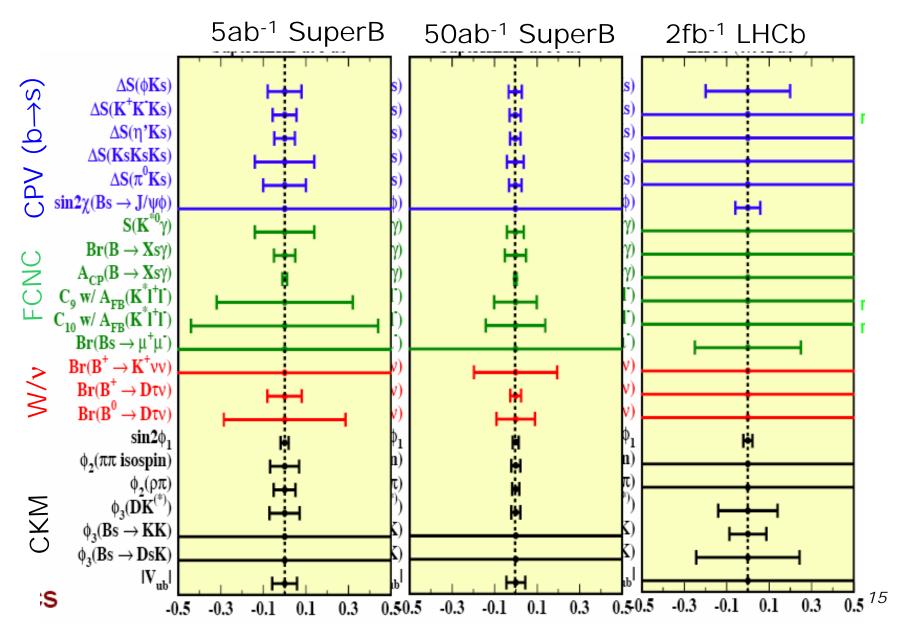
h

 \overline{q}


S

 \overline{a}

 $A_7 A_{10}$ sign flipped case


 $SM(A_7 = -0.330, A_9 = 4.069, A_{10} = -4.213)$

1+

What's in store: Physics reach at SuperB

From T.I ijima talk

Estimate of some Theoretical Uncertainties

Ligeti, ICHEP 2004

Measurement (in SM)	Theoretical limit	Present error
$B \to \psi K_S \ (\beta)$	$\sim 0.2^{\circ}$	1.6°
$B ightarrow \phi K_S, \ \eta^{(\prime)} K_S, \dots$ (eta)	$\sim 2^{\circ}$	$\sim 10^{\circ}$
$B \to \pi \pi, \ \rho \rho, \ \rho \pi$ (α)	$\sim 1^{\circ}$	$\sim 15^{\circ}$
$B \to DK (\gamma)$	$\ll 1^{\circ}$	$\sim 25^{\circ}$
$B_s ightarrow \psi \phi ~(eta_s)$	$\sim 0.2^{\circ}$	—
$B_s \rightarrow D_s K \ (\gamma - 2\beta_s)$	$\ll 1^{\circ}$	—
$ V_{cb} $	$\sim 1\%$	$\sim 3\%$
$ V_{ub} $	$\sim 5\%$	$\sim 15\%$
$B \to X \ell^+ \ell^-$	$\sim 5\%$	$\sim 25\%$
$B \to K^{(*)} \nu \bar{\nu}$	$\sim 5\%$	

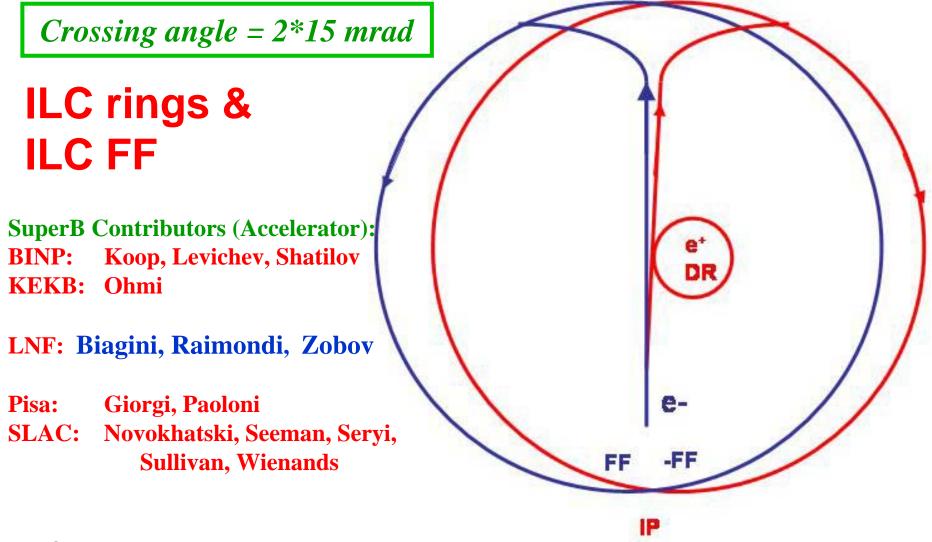
SuperB Physics case

- There is a solid case for a SuperB collecting more than 50 ab-1:
 - Precision measurements allowing to detect discrepancies from the standard model
 - Theoretical precision allows (or will allow) this in many channels
 - □ Rare decay measurements
 - □ Lepton flavour violation
 - In addition: possibility to run at tau/charm threshold, polarized beam
- See for example:
 - Report from Roadmap committee (Slac.BABAR Analysis Doc#828 26July2004)
 - □ The Discovery Potential of a Super B Factory (Slac-R-709)
 - □ Letter of Intent for KEK Super B Factory (KEK Report 2004-4)
 - □ Physics at Super B Factory (hep-ex/0406071)
 - □ SuperB report (hep-ex/0512235)
 - □ Many documents available at the URL : <u>www.pi.infn.it/SuperB</u>

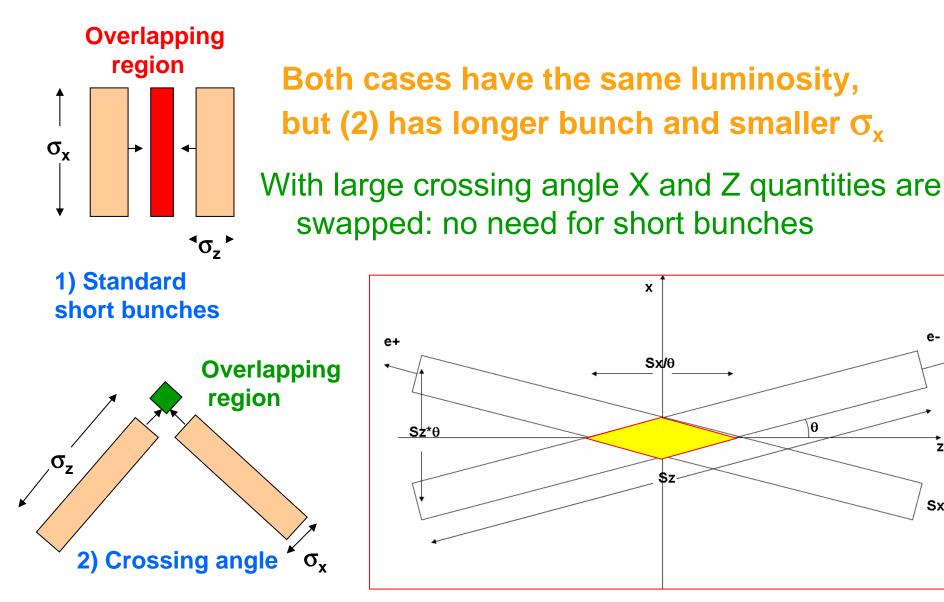
Accelerator

Summary from Oide's talk at 2005 2nd Hawaii SuperBF Workshop

- Present design of SuperKEKB (SAME CONSIDERATIONS FOR PEPII) hits fundamental limits in the beam-beam effect and the bunch length (HOM & CSR)¹. Higher current is the only way to increase the luminosity.
- Many technical and cost issues are expected with a new RF system

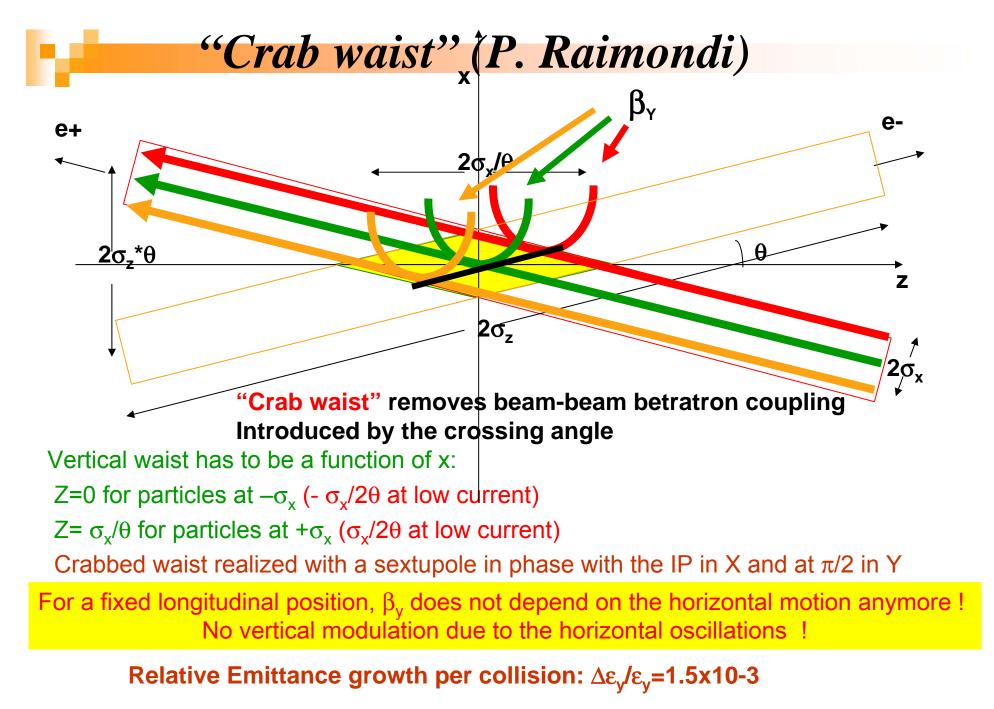

We need a completely different collider scheme.....

"Just" increasing the current of PEP-II/KEKB is expensive


- •wall power
- detector background explosion
- •effective limitation around 5x1035

¹High order modes, Coherent Synchrotron Radiation

SuperB new approach based on ILC Final Focus and Damping Ring



e-

z

Sx

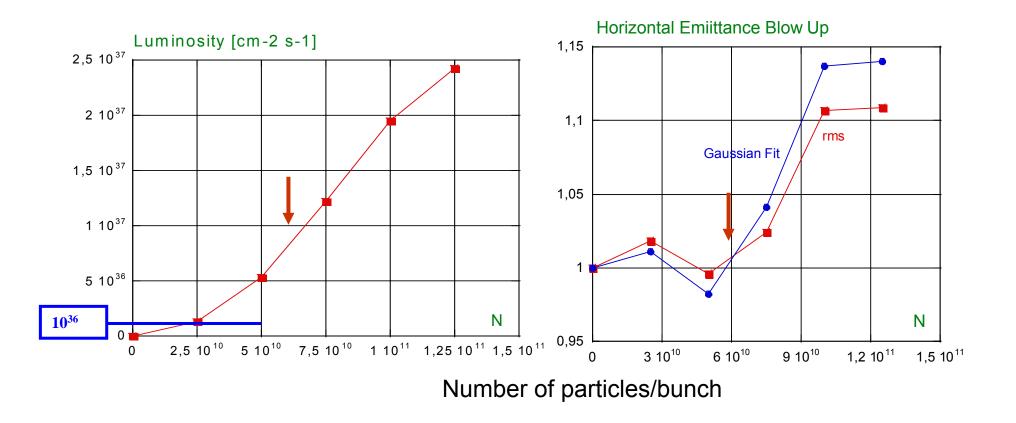
Machine parameters

- Present parameter set based on ILCDR-like parameters 3.0 Km long rings studied with ILC OCS (Baseline) lattice scaled to 4 and 7 GeV
 - Same DR emittances
 - Same DR bunch length
 - □ 1.5 times DR bunch charges
 - □ Same ILC-IP betas
- Crossing angle and "crab waist" to minimize bb blowup
 To be tested in 2007 on DAFNE.
- Use PEP-KEK DR damping time 17ms
- Fewer and lower field wigglers used
- Final Focus (ILC-like) included
- Design based on recycling all PEP hardware, Bends, Quads and Sexts, and RF system

□ Corresponds to a lot of money

• Maximize Luminosity keeping low ΔE and wall power.

Energy (GeV)	4	7			
C (m)	2762	2762			
B _w (T)	1.4	1.05			
L _{bend} (m)	2.1	10.8			
N. bends	96	96			
B _{bend} (T)	0.439	0.144	۱ſ		
Uo (MeV/turn)	2.3	4.1	┨┟		
Wiggler sections	4	4			
σ _z (mm)	7.0	7.0	┨┠		
τ _s (ms)					
ε _x (nm)	0.79	0.71	┨┠		
Emittance ratio	0.25%	0.25%	Ш		
ΔE	1.0x10 -3	1.1x10 ⁻³	1		
Momentum compaction	1.85x10 ⁻⁴	3.90x10 ⁻⁴			
V _s	0.012	0.026	1[
Vrf (MV)	5.5	19	┨┟		
N _{part} (x10 ¹⁰)	3.31	1.89	11		
I _{beam} (A)	2.5	1.44]		
Tousheck lifetime (min)	95	1100			
P _{beam} (MW)	5.7	5.9	L		
Frf (MHz)	4	476			
N _{bunches}	4	4167			
Gap		5%			
P _{wall} (MW) (50% eff) 2 rings	2	(23.2)			


Ring Parameters

IP Para	meters
βx	20mm
σχ	4μm
σχρ	200µrad
βy	200 μm
σy	20nm
σур	100µrad
σΖ	7mm
2 *θ	30mrad

L>10³⁶ cm² s⁻¹

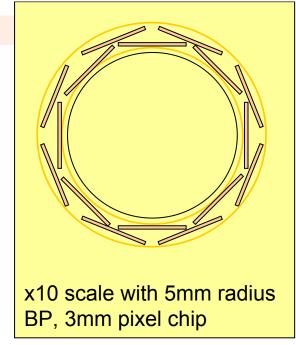
POWER < 30MW 24

M. Zobov, D. Shatilov

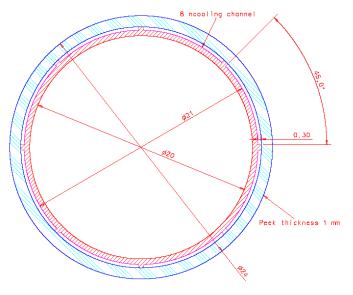
Detector

Backgrounds

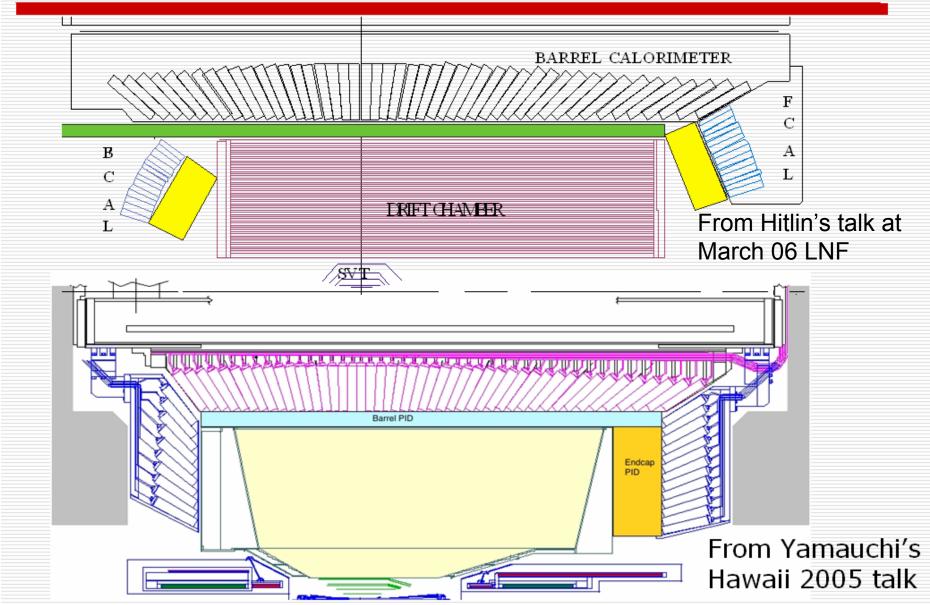
- SuperB beam currents (2A) are similar to PEP-II/KEKB
- Reasonable to assume background is not larger than what with have today
 - Detailed simulations ongoing, especially for radiative Bhabhas and Touschek backgrounds
 - Need to design a robust detector with the enough segmentation and radiation hardness to withstand surprises (x5 safety margin)
- IR design is critical
 - Radiative Bhabhas
 - Syncrotron radiation shielding
 - □ Shielding from beam-beam blow up


Asymmetry

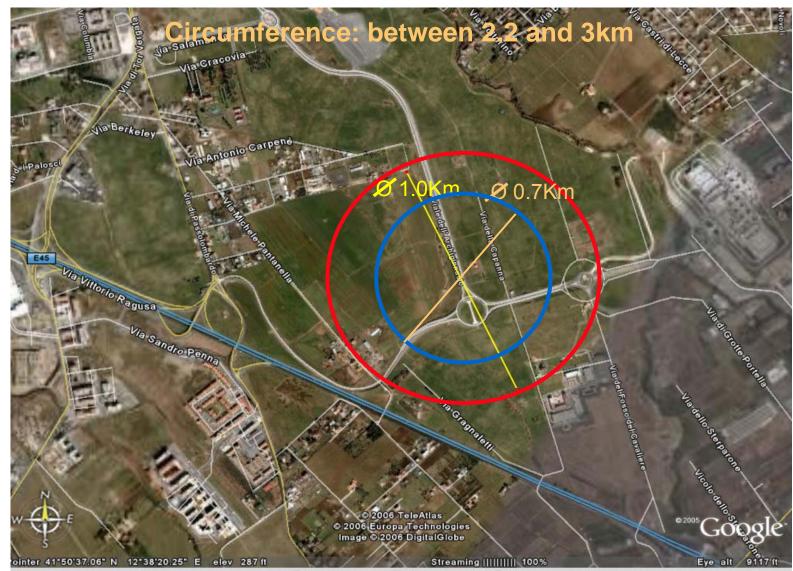
- Lower boost advantegeous for machine design
 - □ Babar: 9 + 3.1 βγ=0.56 , Belle: 8 + 3.5 βγ=0.45
 - □ SuperB: 7 + 4 βγ=0.28
- we can afford to have a lower boost only if the vertexing resolution is good:
- □ small radius Vertex separation significance beam pipe 20 ∆**z**/∂(∆z) $<\Delta z > \sigma(\Delta z)$ vs $\beta \gamma$ 18 □ very little material beampipe 0.5cm 16 in b.p. and first layer beampipe 1cm 14 A b.p. with r<1cm</p> beampipe 1.5cm 12 is highly desirable 10 Present Babar value N.Neri 0 0.1 0.3 0.5 0.6 0.2 0.4 βγ


Detector components

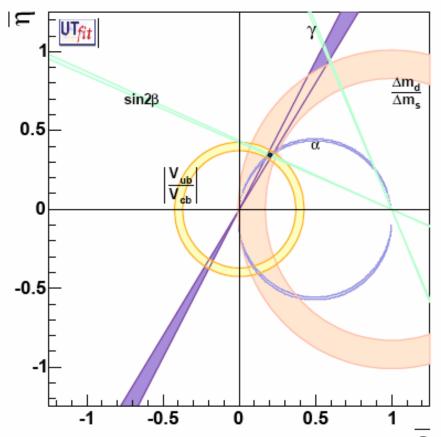
Vertexing


- Thin pixel layer glued on beam pipe: needs R&D
- Intermediate tracking Si Strip detectors
- Central tracking Drift chamber
- Particle Identification
 - Čerenkov based PID like DIRC
 - Need development on readout
 - Endcap region requires special study
- Calorimeter
 - Barrel part could be reused
 - In the endcaps require smaller Moliere radius and faster crystals Muon
 - It doesn't seem to be a problem

Pipe Inner Radius 1 cm


Comparison – BABAR and Belle for SuperB

Conclusion


- The physics case for a high luminosity B Factory is clearly established
- The SuperB accelerator concept allows to reach and exceed the 10³⁶ threshold
- There is a growing international interest and participation
- A conceptual design report will be available in early 2007 for review
- Next issues are: site, money

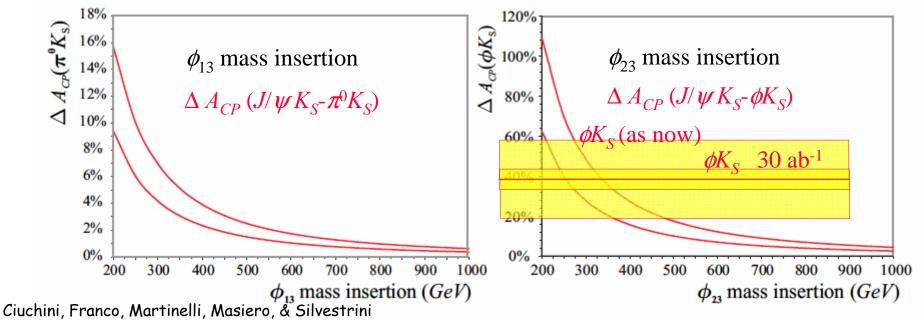
Possible site: Tor Vergata Campus

BACKUP

UNIVERSAL UT fit with 50 ab⁻¹

Universal fit makes only use of quantities independent of NP contributions within MFV

Extrapolation at high Lumi


CPV in Rare 2	e+e− Precision			
Measurement	Goal	3/ab	10/ab	50/ab
$S(B^0 \rightarrow \phi K_S^0)$	≈ 5%	16%	8.7%	3.9%
$S(B^0 \rightarrow \eta' K_s^0)$	≈ 5%	5.7%	3%	1%
$S(B^0 \rightarrow K_s^0 \pi^0)$		8.2%	5%	4%
$S(B^0 \rightarrow K_s^0 \pi^0 \gamma)$	SM: ≈ 2%	11%	6%	4%
$A_{CP}(b \rightarrow s\gamma)$	SM: $\approx 0.5\%$	1.0%	0.5%	0.5%
$A_{CP} (B \rightarrow K^* \gamma)$	SM: $\approx 0.5\%$	0.6%	0.3%	0.3%

CAVEAT on PENGUINS

Some effects seen in $b \rightarrow ss\overline{s}$ by Belle/*BABAR* could appear intriguing, but ...

- Belle /BABAR results on specific modes are not in detailed agreement
- □ There are non-negligible SM theory uncertainties in many modes
- □ Vulnerability will remain even if results in the next few years reach $4+\sigma$

Better look to some clean mode. Example:

b→sl+l precision measurements

New Physics – $K^{(*)}$ I+I-, sI+I	e ⁺ e ⁻ Precision				
Measurement	Goal	3/ab	10/ab	50/ab	100/ab
$B(B \rightarrow K \mu^{+} \mu^{-}) / B(B \rightarrow K e^{+} e^{-})$	SM: 1	~8%	~4%	~2%	~1.5%
A _{CP} (B→K*I+I⁻) (all) (high mass)	SM: < 0.05%	~6% ~12%	~3% ~6%	~1.5% ~3%	~1.1% ~2%
$A^{FB}(B \longrightarrow K^* 1^+ 1^-) : \hat{s}_0$	SM: ±5%	~20%	~9%	9%	
$A^{FB}(B \rightarrow sl+l^{-}) : \hat{s}_{0}$		27%	15%	6.7%	5.0%
$A_{FB} \left(B \rightarrow s + ^{-} \right) \colon C_9, \ C_{10}$		36-55%	20-30%	9-13%	7-10%

Rare Decays

MEASUREMENT	Goal	3/ab	10/ab	50/ab	100/ab
$B(B \rightarrow D^* \tau \nu)$	SM: B: 8x10 ⁻³	10.2%	5.6%	2.5%	
B(<i>B</i> →svv)K,K*	SM:Theory ~5% 1 excl: 4x10 ⁻⁶	~1σ	>3ơ	>4ơ	>5σ
B(<i>B</i> →invisible)		<2x10 ⁻⁶	<1x10 ⁻⁶	<4x10 ⁻⁷	<2.5x10 ⁻⁷
$B(B_d \rightarrow \mu \mu)$	~8x10 ⁻¹¹	<3x10 ⁻⁸	<1.6x10 ⁻⁸	<7x10 ⁻⁹	<5x10 ⁻⁹
$B(B_d \rightarrow \tau \tau)$	~1x10 ⁻⁸	<1x10 ⁻³	O(10 ⁻⁴)	?	?
$B(\tau \rightarrow \mu \gamma) \text{ now} < 4.2 \ 10^{-8}$ $\leq \frac{1}{\sqrt{5}}$					<3.4 10 ⁻⁹
$\leq \frac{1}{\sqrt{\int Ldt}}$ B($\tau \rightarrow \mu Ks$) now < 4.910 ⁻⁸					<1.25 10-10