

$B_{s,d} \rightarrow h^+h^+$ @ LHCb

A. Sarti LNF - INFN

$B \rightarrow h^+h^-$ modes: CKM phases and NP

- ◆ Since the original CLEO measurement [BR(B_d→K+π-) ~ 4 BR(B_d→π+π-)], it is well known that penguin diagrams cannot be neglected in the two-body B-decay amplitudes
 - This fact complicates considerably the extraction of CKM phases from these decays
 - However, a possibility to eliminate unknown hadronic quantities relies in exploiting flavour symmetries, e.g. combining the measurements from U-spin related decay modes
- The presence of penguins can be viewed as an opportunity rather than a problem
 - New Physics contributions might show up inside the loops of the penguin diagrams, and CKM quantities extracted from these modes can differ from the ones calculated from tree-level modes

U-spin symmetries

T: tree
P: penguin
P^c_{EW}: colour
suppressed
electroweak
penguin
PA: penguin
annihilation
E: exchange

- Not all exactly U-spin symmetric, E and PA contributions missing from flavour specific decays
- E and PA contributions expected to be relatively small, and can be experimentally probed by measuring the still unobserved $B_s \rightarrow \pi^+\pi^-$ and $B_d \rightarrow K^+K^-$ branching ratios $BR \sim O(10^{-8})$

- □ Large beauty production cross section expected at 14 TeV p-p collisions: all b-hadron species produced (B[±], B⁰_d, B⁰_s, B_c, Λ_b \rightarrow 40%,40%,10%,10%)
- \Box B hadrons are produced very likely with a small relative angle and in the very forward (backward) region: LHCb uses just the forward direction 1.8 < η < 4.9
 - @ nominal luminosity (L=2•10³² cm⁻²s⁻¹) about 10¹² bb events in 10⁷ s

$$\sigma_{bb} = 500 \mu b; \sigma_{inel} = 80 mb; \sigma_{bb} / \sigma_{inel} \sim 6\%$$

Too many min bias MC events needed to asses
 S/B: assumption that main bkg comes from b
 events reduces the events by factor 100

For this study about 300k signal events and 27M inclusive beauty events have been used

$B \rightarrow h^+h^-$ selection cuts

- For each pair of charged tracks we cut on
 - $\bullet \max (p_{T1}, p_{T2})$
 - $\bullet \min (p_{T1}, p_{T2})$
 - max (IP1/ σ_{IP1} , IP2/ σ_{IP2})
 - min (IP1/ σ_{IP1} , IP2/ σ_{IP2})
 - \bullet χ^2 of common vertex
- Then, the B candidate is selected with cuts on
 - **♦ p**_T
 - IP/σ_{IP}
 - L/σ_L

p,

 IP/σ_{IP}

 L/σ_L

GeV/c

>

2.5

18

Particle identification

PID discriminants built as difference between log likelihoods of particle hypotheses

Invariant mass of selected

- ◆ Efficient hadron PID crucial for the B→h+h'- channels
 - Invariant masses one on top of the other \rightarrow kinematic separation possible but weak
- Calibration of K/ π PID on data will be performed using the D*+ \rightarrow D° π +, D° \rightarrow K+ π -decay chain
 - Large "PID unbiased" samples of such D* decays will be acquired with dedicated D* trigger chain (300 Hz bandwidth)

Using PID information

- Every h⁺h'⁻ channel is potentially a background for the other channels:
 - The impressive performance of RICH systems allows to select very clean samples cutting on PID information
 - To ease the evaluation of systematics a simultaneous Likelihood fit has been used

The various channels and background are separated in the fit by means of the particle ID observables and invariant mass

Mass resolution

- Discrimination of $B_d \to K^-\pi^+$ from $B_s \to \pi^+ K^-$ must rely on mass resolution only since they share exactly the same signature
 - − B_d → K⁻ π ⁺ about 16 times more abundant (4 times larger branching fraction, 4 times larger hadronization fraction)

Nominal mass resolution of σ=16 MeV/c² allows for a clean separation between the two signals

Proper time resolution

- □ Excellent proper time resolution allows to perfectly resolve the fast B_s oscillations
 - $-\sigma_t = \sim 40$ fs (10 times less than the oscillation period actually)
- Calibration of proper time resolution on data is crucial!
 - will be done in LHCb by disentangling prompt $J/\psi \rightarrow \mu^+\mu^-$ from non-prompt component from B decays
 - The prompt component is affected just by the intrinsic resolution of the detector, hence can be used for calibration
 - "Lifetime unbiased" prompt J/ψ events will be acquired with dedicated highmass di-muon trigger (600 Hz bandwidth)

Selection performance

- Yields are calculated for an integrated luminosity of 2 fb⁻¹
 - 10⁷ seconds at nominal LHCb luminosity
- Limited background-to-signal ratios
 - Both combinatorial and from the other B→h+h'- modes
 (due to wrong particle ID
- ◆ Hundreds of thousands of B→h+h'- decays triggered, reconstructed and selected per year of running with high degree of purity!

π K spectrum selected from a sample of 27M bb MC events

	6.	= 6 × 6.	-1/ × 64/	1	BR 10 ⁻⁶	Yield	B/S	B/S
	ϵ_{gen}	$\epsilon_{tot} = \epsilon_{gen} \times \epsilon_{s}$ $\epsilon_{sel/gen}$	$\epsilon_{trg/sel} \sim \epsilon_{trg}$	ϵ_{tot}	DIX 10		bb	spec
$B_d^0 \to \pi^+\pi^-$	34.9 ± 0.3	7.36 ± 0.13	36.3 ± 1.1	0.93 ± 0.03	4.8	35700	0.46	0.08
$B_d^0 \to K^+\pi^-$	34.9 ± 0.3	7.21 ± 0.07	36.8 ± 0.6	0.93 ± 0.02	18.5	137600	0.14	0.02
$B_s^0 \to \pi^+ K^-$	34.8 ± 0.3	7.25 ± 0.30	40.6 ± 2.3	1.02 ± 0.06	4.8	9800	1.92	0.54
$B_s^0 \to K^+K^-$	34.8 ± 0.3	7.11 ± 0.13	39.3 ± 1.2	0.97 ± 0.03	18.5	35900	< 0.06	0.08
$\Lambda_b \to p \pi^-$	34.6 ± 0.3	7.20 ± 0.26	38.3 ± 2.3	0.95 ± 0.06	4.8	9100	1.66	0.11
$\Lambda_b \rightarrow pK^-$	34.6 ± 0.3	6.80 ± 0.13	36.0 ± 1.1	0.86 ± 0.03	18.5	31800	< 0.08	0.02

Flavour Tagging

Opposite side

- ◆ High p_T leptons
- K^{\pm} from $b \rightarrow c \rightarrow s$
- Vertex charge
- Jet charge

Same side

- Fragmentation K[±] accompanying B_s
- π^{\pm} from $B^{**} \rightarrow B^{(*)}\pi^{\pm}$

 $\varepsilon D^2 = \varepsilon (1-2\omega)^2$: tagging power

E: tagging efficiency

ω: mistag probability

Tagging power in %

Tag	B_d	B _s	
Muon	1.1	1.5	
Electron	0.39	0.69	
Kaon opp.side	2.1	2.3	
Jet/ Vertex Charge	1.0	0.97	
Same side π / K	0.73 (π)	3.5 (K)	
Combined (NNET)	5.05	9.5	

Work in continuous progress.

Flavour Tagging (II)

Strategy I:

– Define N different tagging categories and use various fixed $\omega_{_{\rm N}}$

□ Strategy II:

– Extract from kinematic variables the per event ω : $P(\omega) = P(\omega | p,...)P(p)$

In both cases, control samples are needed in order to evaluate ω

$$\omega_{(N)}$$
 can be extracted from data using B⁺ (ex. B⁺ \rightarrow J/ ψ K⁺, B⁺ \rightarrow D⁰ $\mu\nu$) or B⁰ flavour-specific (B⁰ \rightarrow K⁺ π ⁻, B⁰ \rightarrow J/ ψ K^{*0}, B⁰ \rightarrow D*- μ ⁺ ν) decays

For the K_{ss} , $BR(B_s \rightarrow \pi K)$ is too low. ω_{ss} can be fixed to the value extracted from $B_s \rightarrow D_s \pi$ or $B_s \rightarrow D_s \mu \nu$ events.

Toy MC generation

- □ A toy MC is used in order to generate large samples of signal and background events for estimating sensitivities on CP parameters from time dependent decay rate fits
- Signal samples generated simulating CP violation, proper time acceptance, proper time resolution and tagging
 - For each event the toy MC generates mass, proper time, tagging response, PID response according to the results from the full GEANT4 simulations
- Background mass and proper time spectra generated according to result from the full simulation

will be calibrated on real data using event by event acceptance functions – studies going on in LHCb

Sensitivity on CP asymmetries

- CP sensitivities are then estimated with an extended unbinned maximum likelihood fit to the toy MC sample
- □ The likelihood fit is performed simultaneously to all the B→hh' channels, including tagged and untagged samples
- □ C and S coefficients for $B_d \to \pi^+\pi^-$ and $B_s \to K^+K^-$ events tagged as B (q=+1) or B (q=-1) are given by

$$\lambda_f = \frac{q}{p} \frac{\overline{A}_f}{A_f}; \quad f = \pi^+ \pi^-, K^+ K^-; \quad C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}; \quad S_f = \frac{2Im\lambda_f}{1 + |\lambda_f|^2}$$

LHCb can reach a sensitivity, on B_d modes, about 3 times better than the current world average in 10⁷ s of running at nominal luminosity

Fit results corresponding to Int. L=2fb⁻¹ (10⁷ seconds at nominal LHCb luminosity)

	$B_d \rightarrow \pi^+\pi^-$	B _s →K+K ⁻	
σ(C)	0.043 (0.10*)	0.042	
σ(S)	0.037 (0.12*)	0.044	
	$B_d \rightarrow K^+\pi^-$	$B_s \rightarrow \pi^+ K^-$	
$\sigma(A_{CP})$	0.003 (0.015*)	0.02	

*Current world average

Trees, penguins and gamma

$$A(B^0 \to \pi^+ \pi^-) = K(e^{i\gamma} - de^{i\theta})$$

$$A(B_s^0 \to K^+ K^-) = \frac{\lambda}{1 - \lambda^2/2} K'(e^{i\gamma} + \frac{1 - \lambda^2}{\lambda^2} d' e^{i\theta'})$$

Sensitivity to γ from the interference of T and P amplitudes

- d, d': penguin-to-tree ratios
- θ, θ': penguin-tree strong phase differences

Sensitivity to γ doubly Cabibbo suppressed in this mode ⊗

Using U-spin symmetry one gets d=d' and $\theta=\theta'$

Method and parametrization from

R. Fleischer, PLB 459 (1999) 306

Extraction of gamma

$$C(B_d^0 \to \pi^+ \pi^-) = f_1(d, \theta, \gamma)$$

$$S(B_d^0 \to \pi^+ \pi^-) = f_2(d, \theta, \gamma, \phi_d)$$

$$C(B_s^0 \to K^+ K^-) = f_3(d', \theta', \gamma)$$

$$A_{CP}^{th}(\tau) = \frac{C \cdot \cos(\Delta M \cdot \tau) - S \cdot \sin(\Delta M \cdot \tau)}{\cosh(\frac{\Delta \Gamma}{2} \cdot \tau) - A_{\Delta \Gamma} \cdot \sinh(\frac{\Delta \Gamma}{2} \cdot \tau)}$$

$$S(B_s^0 \to K^+ K^-) = f_4(d', \theta', \gamma, \phi_s)$$

Once the direct and mixing-induced CP-violating terms are measured, one has a system of 7 unknowns and 4 equations

However, the mixing phase ϕ_d (ϕ_s) is (will be) measured from $B_d \rightarrow J/\psi K_S$ ($B_s \rightarrow J/\psi \phi$) \rightarrow 5 unknowns

Relying on U-spin symmetry one eliminates two further unknowns \rightarrow 3 unknowns, system over-constrained, γ can be extracted unambiguously

Sensitivity on gamma (L=2fb⁻¹)

- □ Extraction of γ performed with a Bayesian approach in 3 different scenarios (in this exercise γ =65° is assumed)
 - (1) Perfect U-spin symmetry
 - i.e. using the constraints d=d'; $\theta = \theta'$
 - (2) Weaker assumption: perfect U-spin symmetry just for d, d'
 - d=d'; no constraint on θ , θ'
 - (3) Even weaker: given U-spin breaking for d, d'
 - $\xi = d'/d = [0.8, 1.2]$; no constraint on θ , θ'

Sensitivity ranging from $\sim 4^\circ$ in case of perfect U-spin assumed, to 7° - 10° partially releasing U-spin assumptions (but a secondary fake solution appears)

Exercise: using world averages

(not using LHCb results)

- □ Instead of using the $B_s \rightarrow K^+K^-$ one can make use of the $B_d \rightarrow K^+\pi^-$
 - It just differs for the spectator quark, but neglecting penguin annihilation and exchange diagrams which are not present in $B_d \rightarrow K^+\pi^-$
 - Assuming U-spin symmetry the cosine term of the time dependent asymmetry of $B_s \rightarrow K^+K^-$ is equal to the charge asymmetry of $B_d \rightarrow K^+\pi^-$, thus we can replace C_{KK} with $A_{K\pi}$
 - One observable is missing (S_{KK}), but still can solve system of contraints for γ
- Current world averages from HFAG
 - $C_{\pi\pi} = -0.37 \pm 0.10$ (BaBar/Belle)
 - $S_{\pi\pi} = -0.50 \pm 0.12$ (BaBar/Belle)
 - $A_{K\pi}$ = -0.093 ± 0.015 (BaBar/Belle/CLEO/CDF)
- p.d.f. for γ obtained allowing for a U-spin breaking
 - $\Delta\theta = \theta' \theta = \pm 20^{\circ}$
 - $\xi = d'/d = [0.8, 1.2]$

18

Conclusions

- □ LHCb will collect large samples of B \rightarrow h⁺h' decays
 - Its excellent vertexing and PID capabilities will allow to collect several hundreds of thousands of $B \rightarrow h^+h^{\prime-}$ events with very high purity
- □ The CP sensitivity reachable on B_d modes (10⁷ s of data taking, L = $2 \cdot 10^{32}$ cm⁻²s⁻¹) is ~3 times better than the current world averages (B factories, Tevatron)
- □ Besides the general interest of measuring CP violation for these channels, especially for the still unmeasured B_s decays, the $B \rightarrow h^+h^-$ modes can provide useful information to constrain the CKM angle
 - By relating the B_d and B_s decay modes by means of the U-spin flavour symmetry (even allowing a symmetry breaking to some extent it is still possible to extract useful information)
- \blacksquare The extraction of γ from these decays can reveal contributions from NP
 - γ obtained from these decay modes might thus be different from γ from tree level modes, such as B \to DK