$B_{s,d} \rightarrow h^+h^+$ @ LHCb A. Sarti LNF - INFN ## $B \rightarrow h^+h^-$ modes: CKM phases and NP - ◆ Since the original CLEO measurement [BR(B_d→K+π-) ~ 4 BR(B_d→π+π-)], it is well known that penguin diagrams cannot be neglected in the two-body B-decay amplitudes - This fact complicates considerably the extraction of CKM phases from these decays - However, a possibility to eliminate unknown hadronic quantities relies in exploiting flavour symmetries, e.g. combining the measurements from U-spin related decay modes - The presence of penguins can be viewed as an opportunity rather than a problem - New Physics contributions might show up inside the loops of the penguin diagrams, and CKM quantities extracted from these modes can differ from the ones calculated from tree-level modes ## **U-spin symmetries** T: tree P: penguin P^c_{EW}: colour suppressed electroweak penguin PA: penguin annihilation E: exchange - Not all exactly U-spin symmetric, E and PA contributions missing from flavour specific decays - E and PA contributions expected to be relatively small, and can be experimentally probed by measuring the still unobserved $B_s \rightarrow \pi^+\pi^-$ and $B_d \rightarrow K^+K^-$ branching ratios $BR \sim O(10^{-8})$ - □ Large beauty production cross section expected at 14 TeV p-p collisions: all b-hadron species produced (B[±], B⁰_d, B⁰_s, B_c, Λ_b \rightarrow 40%,40%,10%,10%) - \Box B hadrons are produced very likely with a small relative angle and in the very forward (backward) region: LHCb uses just the forward direction 1.8 < η < 4.9 - @ nominal luminosity (L=2•10³² cm⁻²s⁻¹) about 10¹² bb events in 10⁷ s $$\sigma_{bb} = 500 \mu b; \sigma_{inel} = 80 mb; \sigma_{bb} / \sigma_{inel} \sim 6\%$$ Too many min bias MC events needed to asses S/B: assumption that main bkg comes from b events reduces the events by factor 100 For this study about 300k signal events and 27M inclusive beauty events have been used ## $B \rightarrow h^+h^-$ selection cuts - For each pair of charged tracks we cut on - $\bullet \max (p_{T1}, p_{T2})$ - $\bullet \min (p_{T1}, p_{T2})$ - max (IP1/ σ_{IP1} , IP2/ σ_{IP2}) - min (IP1/ σ_{IP1} , IP2/ σ_{IP2}) - \bullet χ^2 of common vertex - Then, the B candidate is selected with cuts on - **♦ p**_T - IP/σ_{IP} - L/σ_L p, IP/σ_{IP} L/σ_L GeV/c > 2.5 18 ## Particle identification PID discriminants built as difference between log likelihoods of particle hypotheses ## Invariant mass of selected - ◆ Efficient hadron PID crucial for the B→h+h'- channels - Invariant masses one on top of the other \rightarrow kinematic separation possible but weak - Calibration of K/ π PID on data will be performed using the D*+ \rightarrow D° π +, D° \rightarrow K+ π -decay chain - Large "PID unbiased" samples of such D* decays will be acquired with dedicated D* trigger chain (300 Hz bandwidth) ## **Using PID information** - Every h⁺h'⁻ channel is potentially a background for the other channels: - The impressive performance of RICH systems allows to select very clean samples cutting on PID information - To ease the evaluation of systematics a simultaneous Likelihood fit has been used The various channels and background are separated in the fit by means of the particle ID observables and invariant mass ### Mass resolution - Discrimination of $B_d \to K^-\pi^+$ from $B_s \to \pi^+ K^-$ must rely on mass resolution only since they share exactly the same signature - − B_d → K⁻ π ⁺ about 16 times more abundant (4 times larger branching fraction, 4 times larger hadronization fraction) Nominal mass resolution of σ=16 MeV/c² allows for a clean separation between the two signals ## Proper time resolution - □ Excellent proper time resolution allows to perfectly resolve the fast B_s oscillations - $-\sigma_t = \sim 40$ fs (10 times less than the oscillation period actually) - Calibration of proper time resolution on data is crucial! - will be done in LHCb by disentangling prompt $J/\psi \rightarrow \mu^+\mu^-$ from non-prompt component from B decays - The prompt component is affected just by the intrinsic resolution of the detector, hence can be used for calibration - "Lifetime unbiased" prompt J/ψ events will be acquired with dedicated highmass di-muon trigger (600 Hz bandwidth) ## Selection performance - Yields are calculated for an integrated luminosity of 2 fb⁻¹ - 10⁷ seconds at nominal LHCb luminosity - Limited background-to-signal ratios - Both combinatorial and from the other B→h+h'- modes (due to wrong particle ID - ◆ Hundreds of thousands of B→h+h'- decays triggered, reconstructed and selected per year of running with high degree of purity! # π K spectrum selected from a sample of 27M bb MC events | | 6. | = 6 × 6. | -1/ × 64/ | 1 | BR 10 ⁻⁶ | Yield | B/S | B/S | |------------------------------|------------------|--|--|------------------|---------------------|--------|--------|------| | | ϵ_{gen} | $\epsilon_{tot} = \epsilon_{gen} \times \epsilon_{s}$ $\epsilon_{sel/gen}$ | $\epsilon_{trg/sel} \sim \epsilon_{trg}$ | ϵ_{tot} | DIX 10 | | bb | spec | | $B_d^0 \to \pi^+\pi^-$ | 34.9 ± 0.3 | 7.36 ± 0.13 | 36.3 ± 1.1 | 0.93 ± 0.03 | 4.8 | 35700 | 0.46 | 0.08 | | $B_d^0 \to K^+\pi^-$ | 34.9 ± 0.3 | 7.21 ± 0.07 | 36.8 ± 0.6 | 0.93 ± 0.02 | 18.5 | 137600 | 0.14 | 0.02 | | $B_s^0 \to \pi^+ K^-$ | 34.8 ± 0.3 | 7.25 ± 0.30 | 40.6 ± 2.3 | 1.02 ± 0.06 | 4.8 | 9800 | 1.92 | 0.54 | | $B_s^0 \to K^+K^-$ | 34.8 ± 0.3 | 7.11 ± 0.13 | 39.3 ± 1.2 | 0.97 ± 0.03 | 18.5 | 35900 | < 0.06 | 0.08 | | $\Lambda_b \to p \pi^-$ | 34.6 ± 0.3 | 7.20 ± 0.26 | 38.3 ± 2.3 | 0.95 ± 0.06 | 4.8 | 9100 | 1.66 | 0.11 | | $\Lambda_b \rightarrow pK^-$ | 34.6 ± 0.3 | 6.80 ± 0.13 | 36.0 ± 1.1 | 0.86 ± 0.03 | 18.5 | 31800 | < 0.08 | 0.02 | ## Flavour Tagging #### Opposite side - ◆ High p_T leptons - K^{\pm} from $b \rightarrow c \rightarrow s$ - Vertex charge - Jet charge #### Same side - Fragmentation K[±] accompanying B_s - π^{\pm} from $B^{**} \rightarrow B^{(*)}\pi^{\pm}$ $\varepsilon D^2 = \varepsilon (1-2\omega)^2$: tagging power E: tagging efficiency ω: mistag probability #### Tagging power in % | Tag | B_d | B _s | | |---------------------|----------|----------------|--| | Muon | 1.1 | 1.5 | | | Electron | 0.39 | 0.69 | | | Kaon opp.side | 2.1 | 2.3 | | | Jet/ Vertex Charge | 1.0 | 0.97 | | | Same side π / K | 0.73 (π) | 3.5 (K) | | | Combined (NNET) | 5.05 | 9.5 | | Work in continuous progress. ## Flavour Tagging (II) #### Strategy I: – Define N different tagging categories and use various fixed $\omega_{_{\rm N}}$ #### □ Strategy II: – Extract from kinematic variables the per event ω : $P(\omega) = P(\omega | p,...)P(p)$ #### In both cases, control samples are needed in order to evaluate ω $$\omega_{(N)}$$ can be extracted from data using B⁺ (ex. B⁺ \rightarrow J/ ψ K⁺, B⁺ \rightarrow D⁰ $\mu\nu$) or B⁰ flavour-specific (B⁰ \rightarrow K⁺ π ⁻, B⁰ \rightarrow J/ ψ K^{*0}, B⁰ \rightarrow D*- μ ⁺ ν) decays For the K_{ss} , $BR(B_s \rightarrow \pi K)$ is too low. ω_{ss} can be fixed to the value extracted from $B_s \rightarrow D_s \pi$ or $B_s \rightarrow D_s \mu \nu$ events. ## Toy MC generation - □ A toy MC is used in order to generate large samples of signal and background events for estimating sensitivities on CP parameters from time dependent decay rate fits - Signal samples generated simulating CP violation, proper time acceptance, proper time resolution and tagging - For each event the toy MC generates mass, proper time, tagging response, PID response according to the results from the full GEANT4 simulations - Background mass and proper time spectra generated according to result from the full simulation will be calibrated on real data using event by event acceptance functions – studies going on in LHCb ## Sensitivity on CP asymmetries - CP sensitivities are then estimated with an extended unbinned maximum likelihood fit to the toy MC sample - □ The likelihood fit is performed simultaneously to all the B→hh' channels, including tagged and untagged samples - □ C and S coefficients for $B_d \to \pi^+\pi^-$ and $B_s \to K^+K^-$ events tagged as B (q=+1) or B (q=-1) are given by $$\lambda_f = \frac{q}{p} \frac{\overline{A}_f}{A_f}; \quad f = \pi^+ \pi^-, K^+ K^-; \quad C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}; \quad S_f = \frac{2Im\lambda_f}{1 + |\lambda_f|^2}$$ LHCb can reach a sensitivity, on B_d modes, about 3 times better than the current world average in 10⁷ s of running at nominal luminosity Fit results corresponding to Int. L=2fb⁻¹ (10⁷ seconds at nominal LHCb luminosity) | | $B_d \rightarrow \pi^+\pi^-$ | B _s →K+K ⁻ | | |------------------|------------------------------|----------------------------------|--| | σ(C) | 0.043 (0.10*) | 0.042 | | | σ(S) | 0.037 (0.12*) | 0.044 | | | | $B_d \rightarrow K^+\pi^-$ | $B_s \rightarrow \pi^+ K^-$ | | | $\sigma(A_{CP})$ | 0.003 (0.015*) | 0.02 | | *Current world average # Trees, penguins and gamma $$A(B^0 \to \pi^+ \pi^-) = K(e^{i\gamma} - de^{i\theta})$$ $$A(B_s^0 \to K^+ K^-) = \frac{\lambda}{1 - \lambda^2/2} K'(e^{i\gamma} + \frac{1 - \lambda^2}{\lambda^2} d' e^{i\theta'})$$ # Sensitivity to γ from the interference of T and P amplitudes - d, d': penguin-to-tree ratios - θ, θ': penguin-tree strong phase differences Sensitivity to γ doubly Cabibbo suppressed in this mode ⊗ Using U-spin symmetry one gets d=d' and $\theta=\theta'$ **Method and parametrization from** R. Fleischer, PLB 459 (1999) 306 ## **Extraction of gamma** $$C(B_d^0 \to \pi^+ \pi^-) = f_1(d, \theta, \gamma)$$ $$S(B_d^0 \to \pi^+ \pi^-) = f_2(d, \theta, \gamma, \phi_d)$$ $$C(B_s^0 \to K^+ K^-) = f_3(d', \theta', \gamma)$$ $$A_{CP}^{th}(\tau) = \frac{C \cdot \cos(\Delta M \cdot \tau) - S \cdot \sin(\Delta M \cdot \tau)}{\cosh(\frac{\Delta \Gamma}{2} \cdot \tau) - A_{\Delta \Gamma} \cdot \sinh(\frac{\Delta \Gamma}{2} \cdot \tau)}$$ $$S(B_s^0 \to K^+ K^-) = f_4(d', \theta', \gamma, \phi_s)$$ Once the direct and mixing-induced CP-violating terms are measured, one has a system of 7 unknowns and 4 equations However, the mixing phase ϕ_d (ϕ_s) is (will be) measured from $B_d \rightarrow J/\psi K_S$ ($B_s \rightarrow J/\psi \phi$) \rightarrow 5 unknowns Relying on U-spin symmetry one eliminates two further unknowns \rightarrow 3 unknowns, system over-constrained, γ can be extracted unambiguously ## Sensitivity on gamma (L=2fb⁻¹) - □ Extraction of γ performed with a Bayesian approach in 3 different scenarios (in this exercise γ =65° is assumed) - (1) Perfect U-spin symmetry - i.e. using the constraints d=d'; $\theta = \theta'$ - (2) Weaker assumption: perfect U-spin symmetry just for d, d' - d=d'; no constraint on θ , θ' - (3) Even weaker: given U-spin breaking for d, d' - $\xi = d'/d = [0.8, 1.2]$; no constraint on θ , θ' Sensitivity ranging from $\sim 4^\circ$ in case of perfect U-spin assumed, to 7° - 10° partially releasing U-spin assumptions (but a secondary fake solution appears) ## Exercise: using world averages (not using LHCb results) - □ Instead of using the $B_s \rightarrow K^+K^-$ one can make use of the $B_d \rightarrow K^+\pi^-$ - It just differs for the spectator quark, but neglecting penguin annihilation and exchange diagrams which are not present in $B_d \rightarrow K^+\pi^-$ - Assuming U-spin symmetry the cosine term of the time dependent asymmetry of $B_s \rightarrow K^+K^-$ is equal to the charge asymmetry of $B_d \rightarrow K^+\pi^-$, thus we can replace C_{KK} with $A_{K\pi}$ - One observable is missing (S_{KK}), but still can solve system of contraints for γ - Current world averages from HFAG - $C_{\pi\pi} = -0.37 \pm 0.10$ (BaBar/Belle) - $S_{\pi\pi} = -0.50 \pm 0.12$ (BaBar/Belle) - $A_{K\pi}$ = -0.093 ± 0.015 (BaBar/Belle/CLEO/CDF) - p.d.f. for γ obtained allowing for a U-spin breaking - $\Delta\theta = \theta' \theta = \pm 20^{\circ}$ - $\xi = d'/d = [0.8, 1.2]$ 18 ## **Conclusions** - □ LHCb will collect large samples of B \rightarrow h⁺h' decays - Its excellent vertexing and PID capabilities will allow to collect several hundreds of thousands of $B \rightarrow h^+h^{\prime-}$ events with very high purity - □ The CP sensitivity reachable on B_d modes (10⁷ s of data taking, L = $2 \cdot 10^{32}$ cm⁻²s⁻¹) is ~3 times better than the current world averages (B factories, Tevatron) - □ Besides the general interest of measuring CP violation for these channels, especially for the still unmeasured B_s decays, the $B \rightarrow h^+h^-$ modes can provide useful information to constrain the CKM angle - By relating the B_d and B_s decay modes by means of the U-spin flavour symmetry (even allowing a symmetry breaking to some extent it is still possible to extract useful information) - \blacksquare The extraction of γ from these decays can reveal contributions from NP - γ obtained from these decay modes might thus be different from γ from tree level modes, such as B \to DK