

Rare Hadronic B decays

Adrian Bevan

Flavour physics in the LHC Era 10th October 2006

Overview

- Motivation
- The BaBar Detector
- Isolating Signal Decays
- Results
 - Direct CPV
 - B→VV Results
 - Κ*ρ
 - Constraining penguins in $B \rightarrow \rho \rho$

 - Building a bigger picture
 - Constraining ΔS with $B \rightarrow PP$ decays
 - B→a₁π
 - B→η'V
- Summary

Motivation

- Rare hadronic B decays to PP, PV, VV final states provide a complicated and rich test bed for B physics theory calculations.
 - Branching Fractions.
 - Direct CP violation.
 - TDCPV (not covered see G. Cavoto's talk)
 - Unitarity Triangle angles.
 - VV: polarisation, amplitude hierarchy, T-odd asymmetries, NP searches.
 - + much more...
- This is a small selection of results: BaBar sent O(40) papers on this subject to ICHEP '06.

BaBar detector

 Upgrading muon system to replace all remaining RPCs with LSTs for run 6.

29th September 2006

Isolating signal events

- Beam energy is known very well at an e⁺e⁻ collider like PEP-II.
 - use an energy difference and effective mass to select events:

Results

Searching for needles in a haystack

The full range of measurements... is far too much to cover!

7

Direct CP Violation searches

summarise only two of many results: $K\pi$ and $\pi^+\pi^-\pi^0$.

8

Direct CP violation

 Study difference between number of B (N) and anti-B (N) mesons decaying into the same final state.

$$P(B \to f) \text{ compared to } P(\overline{B} \to \overline{f})$$
$$A_{CP} = \frac{\overline{N} - N}{\overline{N} + N}$$

Need different weak (φ) and strong (δ) phases in the decay amplitudes of the B(B) to the final state.

$$A_{CP} \propto -\sum_{i,j} A_i A_j \left(\sin[\phi_1 - \phi_2] \sin[\delta_1 - \delta_2] \right)$$

 Expect large direct CP Violation when interfering amplitudes are of a similar magnitude.

Direct CPV in $B \rightarrow K\pi$

- 347x10⁶ B pairs
- Charge of K in the final state tags the flavor of the B-meson.
- Use particle ID to separate K and π mesons.
- Calculate asymmetry:

$$\mathcal{A}_{K\pi} \equiv \frac{n_{K^-\pi^+} - n_{K^+\pi^-}}{n_{K^-\pi^+} + n_{K^+\pi^-}}$$

 $\mathcal{A}_{K\pi} = -0.108 \pm 0.024 \pm 0.008$

 2nd Manifestation of direct CPV observed (after ε').

 $B^0 \to \rho^{\pm} \pi^{\mp}$

- Not a CP eigenstate.
- Can measure A_{CP} for both $\rho^+\pi^-$ and $\rho^-\pi^+$ final states.
- Results obtained from the TD Dalitz analysis for α.
- Good channel to continue searching for direct CPV.

$$A_{\rho\pi}^{-+} = \frac{A_{\rho\pi} - C - A_{\rho\pi}\Delta C}{1 - C - A_{\rho\pi}\Delta C} = 0.03 \pm 0.07 \pm 0.03$$
$$A_{\rho\pi}^{+-} = \frac{A_{\rho\pi} + C + A_{\rho\pi}\Delta C}{1 + C + A_{\rho\pi}\Delta C} = -0.38_{-0.16}^{+0.15} \pm 0.07$$

Searches for Direct CP Violation in B decay

- The B-factories observed direct CPV in $B \rightarrow K\pi$ decays in 2004.
- There are other modes with evidence for direct CPV
 - B⁺→ρ(770)⁰K⁺
 - $B^0 \rightarrow \pi^+\pi^-$
 - $B^0 \rightarrow \pi^+ \pi^- \pi^0$
- and a massive effort to uncover more signals.

HFAG

AUGUST 2006

$B \rightarrow VV$ final states.

13

Angular analysis of $B \rightarrow VV$ decays

- 11 observables
 - 6 amplitudes, A₀, A₊₁, A₋₁ + C.C.
 - 5 phases
- Simplify analysis to separating transverse and longitudinal events when have low statistics.
 - Measure polarisation: f_L
- Analogous to $H \rightarrow ZZ \rightarrow I^+I^-I^+I^-$

$$\frac{d^{3}\Gamma}{d\cos\theta_{1}d\cos\theta_{2}d\Phi} \propto \left| \sum_{m=-1,0,1} A_{m}Y_{1,m}(\theta_{1},\Phi)Y_{1,-m}(\theta_{2},\Phi) \right|^{2} \\ \propto \left\{ \frac{1}{4}\sin^{2}\theta_{1}\sin^{2}\theta_{2}(|A_{+1}|^{2}+|A_{-1}|^{2})+\cos^{2}\theta_{1}\cos^{2}\theta_{2}|A_{0}|^{2} \\ +\frac{1}{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}[\cos 2\Phi\Re(A_{+1}A_{-1}^{*})-\sin 2\Phi\Im(A_{+1}A_{-1}^{*})] \\ +\frac{1}{4}\sin 2\theta_{1}\sin 2\theta_{2}[\cos\Phi\Re(A_{+1}A_{0}^{*}+A_{-1}A_{0}^{*})-\sin\Phi\Im(A_{+1}A_{0}^{*}-A_{-1}A_{0}^{*})] \right\}$$

29th September 2006

Adrian Bevan

Angular analysis of $B \rightarrow VV$ decays

• For low statistics / when A₀ dominates:

$$\frac{d^2\Gamma}{\Gamma d\cos\theta_1 d\cos\theta_2} = \frac{9}{4} \left(f_L \cos^2\theta_1 \cos^2\theta_2 + \frac{1}{4} (1 - f_L) \sin^2\theta_1 \sin^2\theta_2 \right)$$
Longitudinal
Transverse

- Longitudinal and transverse polarisations generally have different efficiencies.
- Naive factorisation prediction is

$$f_L \approx 1 - \left(\frac{m_v}{m_b}\right)^2 \approx O(1)$$

- Can also search T-odd (CP violating) asymmetries using triple products and new physics signatures. Easy to do if no single amplitude dominates the final state.
- Hierarchy of amplitudes predicted in SM.

hep-ex/0607057

- 232×10⁶ B Pairs
- BF~few 10⁻⁶.
- 2 VV modes and f₀K*+ have been observed.
- Understanding nonresonant Kπ background is critical for these analyses.

29th September 2006

Adrian Bevan

$$B \rightarrow K^* \rho$$

hep-ex/0607057

Mode	n_{sig}	$S(\sigma)$	$\mathcal{B}(10^{-6})$	f_L	$\mathcal{A}_{ ext{CP}}$
$\rho^0 K^{*+}$		2.5	$3.6^{+1.7}_{-1.6} \pm 0.8 \ (6.1)$	$[0.9 \pm 0.2]$	_
$\rightarrow \rho^0 K^* {}^+_{K^+ \pi^0}$	19^{+16}_{-15}	1.3	$3.2^{+2.7}_{-2.4} \pm 0.9$	$[0.8^{+0.3}_{-0.5}]$	
$\rightarrow \rho^0 K^{*+}_{K^0_S \pi^+}$	32^{+19}_{-17}	2.1	$3.8^{+2.2}_{-2.1} \pm 0.9$	$[1.0 \pm 0.3]$	_
$\rho^{+}K^{*0}$	194 ± 29	7.1	$9.6 \pm 1.7 \pm 1.5$	$0.52 \pm 0.10 \pm 0.04$	$-0.01 \pm 0.16 \pm 0.02$
$\rho^{-}K^{*}_{K^{+}\pi^{0}}$	60^{+25}_{-22}	1.6	$5.4^{+3.8}_{-3.4} \pm 1.6 \ (12.0)$	$\left[-0.18^{+0.52}_{-1.74}\right]$	—
$\rho^{0}K^{*0}$	185 ± 30	5.3	$5.6 \pm 0.9 \pm 1.3$	$0.57 \pm 0.09 \pm 0.08$	$0.09 \pm 0.19 \pm 0.02$
$f_0(980)K^{*+}$		5.0	$5.2 \pm 1.2 \pm 0.5$		$-0.34 \pm 0.21 \pm 0.03$
$\rightarrow f_0(980) K^*{}^+_{K^+\pi^0}$	40^{+13}_{-12}	3.8	$6.2^{+2.1}_{-1.9} \pm 0.7$	_	$-0.50 \pm 0.29 \pm 0.03$
$\rightarrow f_0(980) K^{*\mp}_{K^0_S \pi^+}$	37^{+14}_{-12}	3.2	$4.2^{+1.5}_{-1.4} \pm 0.5$	_	$-0.13 \pm 0.30 \pm 0.01$
$f_0(980)K^{*0}$	83 ± 19	3.5	$2.6 \pm 0.6 \pm 0.9 \ (4.3)$		$-0.17 \pm 0.28 \pm 0.02$

Constraining Penguins in $B^0 \rightarrow \rho^+ \rho^-$

Relate the penguin contribution in ρ⁺ρ⁻ to K^{*0}ρ⁺ using SU(3) symmetry:

$$C_{\text{long}} = \frac{2r\sin\delta\sin(\beta+\alpha)}{1-2r\cos\delta\cos(\beta+\alpha)+r^2},$$

$$S_{\text{long}} = \frac{\sin 2\alpha + 2r\cos\delta\sin(\beta-\alpha) - r^2\sin 2\beta}{1-2r\cos\delta\cos(\beta+\alpha)+r^2},$$

$$R = \left(\frac{|V_{cd}|f_{\rho}}{|V_{cs}|f_{K^*}}\right)^2 \cdot \frac{\Gamma_{L,CP-averaged}(B^{\pm} \to K^{*0}\rho^{+})}{\Gamma_{L,CP-averaged}(B^{0} \to \rho^{+}\rho^{-})},$$

$$= \frac{Fr^2}{1 - 2r\cos\delta\cos(\beta + \alpha) + r^2}.$$

r=|P/T|

- δ =strong phase difference between P and T
- F=Correction for SU(3) breaking effects not included in the decay constants
- The error on α and δ don't depend strongly on F and σ(F): Variance always suppressed by a factor of r².
- Produces usual ambiguities in 0-180°.
- Also get 2 fold ambiguities in δ .
- Remove one ambiguity in δ by assuming $|\delta| < 90^{\circ}$.

Constraints using the Beneke et al. model

For the standard model solution of α:

- c.f. Isospin constraint on α ~18°.
- Error predominantly from measurement of S and C (α_{eff}).

$B \rightarrow \phi K^*$

PRL 93 (2004) 231804

- 227x10⁶ B pairs
- Transversity analysis
- Obtain a small f_L.

29th September 2006

Adrian Bevan

Overview of f_1 in $B \rightarrow VV$ decays

- Some decays follow naive expectations with large f_1 .
- Some dont!
 - **φK***
 - some of the ρK* modes
- Important to finish building the picture:
 - What is f_1 for other $B \rightarrow VV$ modes?
 - What is f₁ for AV modes?
 - Searched for a₁ρ.
 - What additional contributions can explain this pattern?
- Can use $K^{*0}\rho^+$ obtain model dependent constraints on α .
- Also have performed searches for other VV final states (e.g. $\omega\omega$ etc).

Polarizations of Charmless Decays

B→PP,PV, PA.

$B \rightarrow PP$

- Can use B→ηη, η'η', η'η, η'π⁰, ηπ⁰ to bound ΔS=sin2β-sin2β_{eff} in the golden s-penguin modes B→η'K⁰ and φK⁰.
- All final states have neutrals to reconstruct.

 $B(\eta\eta) = (1.1^{+0.5}_{-0.4} \pm 0.1) \times 10^{-6}$ $B(\eta'\eta') < 2.4 \times 10^{-6}$ $B(\eta'\eta) < 1.7 \times 10^{-6}$ $B(\eta\pi^{0}) < 1.3 \times 10^{-6}$ $B(\eta'\pi^{0}) < 2.1 \times 10^{-6}$

 $|\Delta S(\eta' K^0)| < 0.15$ $|\Delta S(\phi K^0)| < 0.38$

- Useful in understanding the decay η'K⁰.
- both $\eta' K^*$ and $\eta' \rho$ provide additional tests of theoretical calculations.

Mode	$n (\mathrm{ev.})$	Bias (ev.)	$\varepsilon(\%)$	$\prod \mathcal{B}_i(\%)$	$S(\sigma)$	$\mathcal{B}(10^{-6})$	\mathcal{A}_{ch}
$B ightarrow \eta' K^*$					5.6	$4.1^{+1.0}_{-0.9}\pm0.5$	
$B^0 o \eta' K^{*0}$					4.3	$3.8\pm1.1\pm0.5$	$-0.08 \pm 0.25 \pm 0.02$
$B^+ o \eta' K^{*+}$					3.6	$4.9^{+1.9}_{-1.7}\pm0.8(<7.9)$	$0.30^{+0.33}_{-0.37} \pm 0.02$
$B^0 o \eta' ho^0$	15^{+11}_{-8}	$+11.2\pm5.7$	22.8 ± 1.4	17.5	0.3	$0.4^{+1.2+1.6}_{-0.9-0.6} (< 3.7)$	
$B^0 \to \eta' f_0(980) (f_0 \to \pi^+ \pi^-)$	$-3^{+6.0}_{-4.0}$	-3.8 ± 2.0	$25.4{\pm}1.6$	17.5	0.2	$0.1^{+0.6}_{-0.4-0.4}(<1.5)$	
$B^+ o \eta' ho^+$	57^{+16}_{-15}	$+11.5 \pm 5.8$	13.0 ± 1.0	17.5	3.2	$8.7^{+3.1}_{-2.8}{}^{+2.3}_{-1.3}(<14)$	$-0.04 \pm 0.28 \pm 0.02$

29th September 2006

Adrian Bevan

$B^0 \rightarrow a_1(1260)\pi$

- First seen in 2004
- Difficult analysis
 - a₁ not well known.
 - Some disagreement on its width in PDG.
 - Decays to ρπ and σπ final states have been reported.
 - τ data from CLEO give the most information on this.
 - Possible backgrounds include a₂(1320)π, π(1300)π.
- Interesting prospects for model dependent CKM constraints
 - Can be used to measure α.
 - Not yet clear how effective a measurement will be.
 - need a_1K , $K_1\pi$ decays as well.

PRD 73 (2006) 057502

 π^+ $\pi^ B^0$ π^-

Angular correlations discriminate between signal and background

BaBar uses the angle between the bachelor π and the normal to the a₁→3π decay plane: (cosA).

$B^0 \rightarrow a_1(1260)\pi$

- Fit m_{ES} , ΔE , Fisher, m_{a1} , cosA.
- backgrounds from
 - $e+e- \rightarrow qq$
 - inclusive B background
 - B⁰→a₂⁺(1320)π[−]
- $B^0 \rightarrow \pi^+(1300)\pi^-$ negligible
- Reconstruction efficiency:
 - ε=11.7%
- Dominant systematic errors:
 - PDF shape (6.2%)
 - $\rho^0 \rho^0$, $\rho \pi \pi$, 4π background.
- Assume BF($a_1 \rightarrow \rho^0 \pi$)=0.5, and B($a_1 \rightarrow \pi^+ \pi^- \pi^+$)=B($a_1 \rightarrow \pi^+ \pi^0 \pi^0$).

218 million $B\overline{B}$ pairs

Summary

- Lots of results on rare hadronic B decays.
 - The spectrum of branching fractions provides theorists reference points to tune calculations.
 - Observation of direct CPV was a triumph of B-physics and we need to continue this effort to see other signals in B⁰ decays and find direct CP violation in B⁺ decay.
 - B→VV decays have provided an interesting polarisation puzzle to solve.
 - Also obtain interesting model dependent constraints on UT.
 - Starting to produce interesting bounds on SM pollution in $\eta' K^0$ and ϕK^0 using PP decays.
- Much more not discussed ... Dalitz analyses, TDCPV, CPV in η'K⁰ etc.
- Lots more work to do in this exciting area into the multiab⁻¹ realm!