Reconstruction of a missing particle with vertex information

Andrey Starodumov

IPP, ETH Zurich
Flavour Workshop, CERN October 9-11, 2006

Based on S. Dambach, U. Langenegger, A. Starodumov, hep - ph/0607294, acc. for pub. in NIMA

Introduction

Decays with a missing particle

- Generally considered as not fully reconstructible
- Few well known exceptions:
- momentum of the decaying particle and all but one of the decay products are known
- detector hermeticity: missing energy measured precisely
- collinear approximation ($H^{0} \rightarrow \tau^{+} \tau^{-}$)
- k-factor in semileptonic B decays
- But: 4-momentum of missing particle can be reconstructed with additional topological information

Decay channel example

- Example decay: $B_{s}^{0} \rightarrow D_{s}^{-} \ell^{+} \nu$
- Six unknown variables: $P_{B}^{i}, P_{\nu}^{i}, i=x, y$ and z
- Four equations

$$
\begin{aligned}
\sqrt{m_{B}^{2}+\vec{P}_{B}^{2}} & =\sqrt{m_{\left(D_{s} \ell\right)}^{2}+\vec{P}_{\left(D_{s} \ell\right)}^{2}}+\left|\vec{P}_{\nu}\right| \\
\vec{P}_{B} & =\vec{P}_{\left(D_{s} \ell\right)}+\vec{P}_{\nu}
\end{aligned}
$$

Event topology

Bs \rightarrow Ds μv

New system of equations

$$
\begin{aligned}
\sqrt{m_{B}^{2}+\vec{P}_{B}^{2}} & =\sqrt{m_{\left(D_{s} \ell\right)}^{2}+\vec{P}_{\left(D_{s} \ell\right)}^{2}}+\left|\vec{P}_{\nu}\right| \\
\left|\vec{P}_{B}\right| & =P_{\left(D_{s} \ell\right)}^{\|}+P_{\nu}^{\|} \\
P_{\nu}^{\perp} & =-P_{\left(D_{s} \ell\right)}^{\left(D_{2}\right.}
\end{aligned}
$$

Solution

$$
P_{\nu}^{\|}=-a \pm \sqrt{r}
$$

where

$$
\begin{aligned}
& a=\frac{\left(m_{B}^{2}-m^{2}-2 \cdot P_{\perp}^{2}\right) \cdot P_{\|}}{2 \cdot\left(P_{\|}^{2}-E^{2}\right)} \\
& r=\frac{\left(m_{B}^{2}-m^{2}-2 \cdot P_{\perp}^{2}\right)^{2} \cdot E^{2}}{4 \cdot\left(P_{\|}^{2}-E^{2}\right)^{2}}+\frac{E^{2} \cdot P_{\perp}^{2}}{P_{\|}^{2}-E^{2}}
\end{aligned}
$$

Here we use the following notations: $P_{\perp}=P_{\left(D_{s} \ell\right)}^{\perp}, P_{\|}=P_{\left(D_{s} \ell\right)}^{\|}, E=$ $E_{\left(D_{s} \ell\right)}, m=m_{\left(D_{s} \ell\right)}$

Event generation

Decay channel : $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}, \quad D_{s}^{-} \rightarrow \phi \pi^{-}, \quad \phi \rightarrow K^{+} K^{-}$ MC generator: PYTHIA V6.227, $E_{C M}=14 \mathrm{TeV}$.

Kinematics and resolutions

- Hadrons: $p_{T} \geq 1 \mathrm{GeV} / c$, muon: $p_{T} \geq 3 \mathrm{GeV} / c$.
- momentum uncertainty:
- pseudorapidity: $\sigma_{\eta}=5.8 \times 10^{-4}$,
- $\phi: \sigma_{\phi}=0.58 \mathrm{mrad}$,
- transverse momentum: $\sigma_{\left(1 / p_{T}\right)}=0.013(\mathrm{GeV} / c)^{-1}$.
- The primary vertex: $\sigma_{x, y}=20 \mu \mathrm{~m}$, the secondary vertex: $\sigma_{\|}=70 \mu \mathrm{~m}$ in flight direction of the B_{s}^{0} and $\sigma_{\perp}=10 \mu \mathrm{~m}$ in the perpendicular direction.

MC simulation

Proper time reconstruction
Amplitude analysis

Proper time

The most important ingredient in the measurement of the B_{s}^{0} oscillation frequency is the proper time

$$
\begin{gathered}
c \tau=\frac{L_{x y} m\left(B_{s}^{0}\right)}{p_{T}\left(B_{s}^{0}\right)} \\
c \tau=\frac{L_{x y} m\left(B_{s}^{0}\right)}{p_{T}\left(D_{s} \ell\right)} \times k \\
k=\frac{p_{T}\left(D_{s} \ell\right)}{p_{T}\left(B_{s}^{0}\right)}
\end{gathered}
$$

MC simulation

Proper time reconstruction
Amplitude analysis

k-factor distribution

MC simulation

Proper time reconstruction
Amplitude analysis

Momentum resolution

A. Starodumov

Reconstruction of a missing particle with vertex information

MC simulation

Proper time reconstruction
Amplitude analysis

Proper time resolution I

k-factor method

neutrino reconstruction method

Proper time resolution II

The distributions are fitted with two Gaussian, the average width σ :

$$
\sigma^{2}=\frac{N_{n}^{2} \sigma_{n}^{2}+N_{w}^{2} \sigma_{w}^{2}}{N_{n}^{2}+N_{w}^{2}}
$$

here $\sigma_{n}\left(\sigma_{w}\right)$ and $N_{n}\left(N_{w}\right)$ are the width and normalization of the narrow (wide) Gaussian.

	σ_{n}	σ_{w}	σ	N_{n}	N_{w}
k-factor	100 fs	338 fs	132 fs	2700	730
ν-reco	77 fs	193 fs	91 fs	2300	660

Amplitude method

- Candidates split into two samples:
- the same flavor ($\mathbf{P}_{\text {unmix }}$) and
- the opposite flavor ($\mathbf{P}_{\text {mix }}$) at production and decay.
- Proper decay time of the B_{s}^{0} mesons is reconstructed.
- Two samples are used to define the time-dependent asymmetry:

$$
a(t)=\frac{P_{u n m i x}-P_{\text {mix }}}{P_{\text {unmix }}+P_{\text {mix }}} \propto A \times D \times \cos \left(\Delta m_{s} t\right)
$$

where D is a global dilution factor accounting for background, miss-tagging and proper-time resolution and A is the amplitude.

Amplitude fit

- In the fit the oscillation frequency Δm_{s} is fixed, leaving the amplitude A as a free parameter.
- A scan over Δm_{s} is performed starting from zero.
- If Δm_{s} is consistent with the true one, the $A \simeq 1$, else $A \simeq 0$.
- The error on the A is calculated according to

$$
\sigma_{A}=\frac{1}{1-2 W} \times \sqrt{\frac{2}{S+B}} \times \frac{S+B}{S} \times e^{\frac{\Delta m_{\sigma}^{2} \sigma_{1}^{2}}{2}}
$$

where W is the mistagging probability, S the number of signal, B the number of background events, and σ_{t} the proper time resolution.

Assumptions

- Number of signal events: 45000
- Signal to Background ratio: 1:1
- Mistagging probability: 40%
- Simulated oscillation frequency: $\Delta m_{s}=17.25 \mathrm{ps}^{-1}$

Results

k-factor method

neutrino reconstruction method

S/B for the 2 methods

- Smaller number of signal and background events due to negative radicand r (factor 2)
- More background events: second (wrong) solution of quadratic equation for signal and background (factor 3)
- k-factor method: 1:1
- neutrino reconstruction method: 1:3.
- But the sensitivity of ν-reconstruction method is at higher values of Δm_{s} due to better proper time resolution!

Sensitivity of the method

sensitivity vs $\sigma_{x y}$

sensitivity vs σ_{\perp}

Conclusion

- Missing particles can be reconstructed using vertex information
- Example: $B_{s}^{0} \bar{B}_{s}^{0}$ oscillations with semileptonic B_{s}^{0} decays
- The sensitivity of proposed method is higher than of conventional k-factor method except if the vertex resolution is too bad
- Proposed method can be used in some other cases where the known topology of a decay compensate for the incompleteness of kinematical information

Other examples

- Life time measurements in the semileptonic B decays

Other examples

- Life time measurements in the semileptonic B decays
- τ reconstruction in $\tau \rightarrow 3 h^{ \pm}+\nu_{\tau}$ decays

Other examples

- Life time measurements in the semileptonic B decays
- τ reconstruction in $\tau \rightarrow 3 h^{ \pm}+\nu_{\tau}$ decays
- $H^{0} \rightarrow \tau^{+} \mu^{-}(?)$

Other examples

- Life time measurements in the semileptonic B decays
- τ reconstruction in $\tau \rightarrow 3 h^{ \pm}+\nu_{\tau}$ decays
- $H^{0} \rightarrow \tau^{+} \mu^{-}$(?)
- $H^{0} \rightarrow \tau^{+} \tau^{-}$(??)
- $B_{s}^{0} \rightarrow \tau^{+} \tau^{-}$(???)

Other examples

- Life time measurements in the semileptonic B decays
- τ reconstruction in $\tau \rightarrow 3 h^{ \pm}+\nu_{\tau}$ decays
- $H^{0} \rightarrow \tau^{+} \mu^{-}$(?)
- $H^{0} \rightarrow \tau^{+} \tau^{-}$(??)
- $B_{s}^{0} \rightarrow \tau^{+} \tau^{-}$(???)

Other examples

- Life time measurements in the semileptonic B decays
- τ reconstruction in $\tau \rightarrow 3 h^{ \pm}+\nu_{\tau}$ decays
- $H^{0} \rightarrow \tau^{+} \mu^{-}$(?)
- $H^{0} \rightarrow \tau^{+} \tau^{-}$(??)
- $B_{s}^{0} \rightarrow \tau^{+} \tau^{-}$(???)
- $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}+\gamma(?)$

Other examples

- Life time measurements in the semileptonic B decays
- τ reconstruction in $\tau \rightarrow 3 h^{ \pm}+\nu_{\tau}$ decays
- $H^{0} \rightarrow \tau^{+} \mu^{-}$(?)
- $H^{0} \rightarrow \tau^{+} \tau^{-}$(??)
- $B_{s}^{0} \rightarrow \tau^{+} \tau^{-}$(???)
- $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}+\gamma(?)$
-...

