Flavor Benchmarks

Sven Heinemeyer, IFCA (CSIC-UC)

CERN, 10/2006

- 1. The general idea(s)
- 2. Different approaches
- 3. One approach in more detail
- **4**. Conclusions

1. The general idea(s)

Benchmarks: (are not a new idea ...)

a set of parameter points in a (your favorite) model (beyond the SM)

- Tool for BSM searches at colliders (past, present, future)
 → often it is not feasible to scan over all parameters
- Map out the characteristics of the parameter space
- Take into account all(?) possibilities
- Ensure compatibility with all(?) current bounds
 - searches for new particles
 - (low-energy) flavor bounds
 - (low-energy) electroweak precision bounds
 - cold dark matter

- . . .

Benchmarks can be used to:

- Study the performance of different detectors
- Study the performance of different experiments
- Perform very detailed studies
- Analyzing the complementarity of different experiments
- Work out synergy effects of different experiments

Prime example from the past: SPS (Snowmass points and slopes) (especially SPS 1a) [hep-ph/0202233]

Sven Heinemeyer, LHC/Flavor WS, CERN, 10.10.2006

If a benchmark is designed to test one sector of a specific model

- \Rightarrow should constraints from other sectors be taken into account?
- \Rightarrow could they be easily avoided?

If a benchmark is designed to test collider phenomenology

then little changes that do not affect the collider phenomenology can easily avoid:

- bounds from cold dark matter
- bounds on $(g-2)_{\mu}$
- b physics constraints

Our idea here:

Study collider phenomenology in (SUSY) models that are compatible with

- direct experimental searches
- flavor physics constraints
- precision observables constraints

Our idea here:

Study collider phenomenology in (SUSY) models that are compatible with

- direct experimental searches
- flavor physics constraints
- precision observables constraints

My personal wishes:

Find/use points as described above (in the (N)MFV MSSM) \ldots

that show interesting phenomenology in low- and high-energy experiments

- \Rightarrow study the complementarity of the low/high-energy experiments
- \Rightarrow study the synergy of the low/high-energy experiments
- i.e. combine results from all sources to pin down the (N)MFV MSSM
- ... but this seems to be very difficult

2. Different approaches

After some discussions we agreed on a two-step process:

1. Identify "interesting" points ("benchmarks") for experimental analysis at ATLAS and CMS.

"interesting" means points in the parameter space that are "favored" by available flavor and high-energy data.

Provide the tools (to a master tool) so that everyone (especially the experimentalists from ATLAS and CMS) can check potentially "interesting" points (for joint (experiment + theory) analyses).

And eventually (3.):

Perform the analysis to investigate the collider reach and phenomenology in the "interesting/favored" points The broad idea how to proceed with the first step:

- a) Identify the models we want to investigate.
- b) Collect suggestions for the point(s) in each model.
 (The points could also be connected to a model line, showing the variation of flavor effects.)
- c) Test these points, i.e. everyone (of us) should check a point against existing experimental data.
- d) Identify among the "surviving" points the ones that show the potentially most interesting phenomenology.

The broad idea how to proceed with the first step:

- a) Identify the models we want to investigate.
- b) Collect suggestions for the point(s) in each model.
 (The points could also be connected to a model line, showing the variation of flavor effects.)
- c) Test these points, i.e. everyone (of us) should check a point against existing experimental data.
- d) Identify among the "surviving" points the ones that show the potentially most interesting phenomenology.

Sounds goodreality looked a bit different

- 1. Start with SPS 1a
- 2. Check consistency with b physics observables

tool: evaluate flavor physics obs. (B, K, B_s) in "near MFV models" (more by the end of the year . . .) check Higgs and precision observables with FeynHiggs

3. Not fully consistent? \Rightarrow add (small?) flavor violation

Fully consistent? \Rightarrow add as much is allowed without violating constraints

4. \Rightarrow check for new effects in high-energy analyses (ATLAS)

<u>Status?</u> Ask Luca and/or Giacomo! ;-) Another approach (with CMS):

- 1. Choose model: MFV MSSM later (hopefully) also NMFV MSSM
- 2. Find points that are in perfect agreement with b physics observables
- 3. Check against other observables (electroweak precision, masses)
 - ⇒ build a master tool for checks (second step of the two-step process)
- 4. \Rightarrow check for effects in high-energy analyses (CMS)

Status?

See the next chapter of this talk See the next talk by Michael Schmitt (UFL)

Sven Heinemeyer, LHC/Flavor WS, CERN, 10.10.2006

3. One approach in more detail

Step 1:

Model of our choice: MFV MSSM possible extension at a later stage: NMFV MSSM

Starting point: hep-ph/0605012 [Gino Isidori, Paride Paradisi]

General feature: large $\tan \beta$, large M_{SUSY}

These points:

- pass all current b physics bounds
- pass all current SUSY collider searches
- should be checked for the Higgs sector constraints
- should be checked for electroweak precision observables
- \Rightarrow may sound trivial, but wait for NMFV MSSM!

 \Rightarrow currently under study in CMS (see next talk)

 $\rightarrow \mathsf{T}$

Overview about the SUSY parameters:

	range	"best" value(s)
$\tan \beta$	30 - 50	40
M_A [GeV]	300 - 1000	300, 500, 800, 1000
A_t [GeV]	-20001000	-1000, -2000
μ [GeV]	500 - 1000	500, 1000
$M_{ ilde{q}}$ [GeV]	> 1000	1000, 2000
$M_{ ilde{l}}$	1/2 $M_{\widetilde{q}}$	
$M_{ ilde{g}}$	$M_{\widetilde{q}}$	
<i>M</i> ₂ [GeV]		300, 500
M_1	1/2 M ₂	

Step 2: the master tool

- \Rightarrow a code that calls the special codes evaluating all observables
- 1. code: *b* physics

based on hep-ph/0605012 [G. Isidori, P. Paradisi] \rightarrow used by the CMS experimentalists

- 2. code: Higgs and precision observables
 - → FeynHiggs [T. Hahn, S.H., W. Hollik, G. Weiglein]
 - \rightarrow not yet included(?)
- 3. code: other/complementary observables
 - \rightarrow anybody interested?
- \Rightarrow Let's see how this works out . . .

4. Conclusions

- Benchmarks are an essential tool for collider studies
- Our idea here: study collider phenomenology in (SUSY) models:
 - agreement with direct experimental searches
 - agreement with flavor physics constraints
 - agreement with precision observables constraints
- Two step process:
 - identify such points
 - combine tools to a master tool (especially for experimentalists)
- One approach: SPS 1a (ATLAS)
- Second approach (CMS):
 - model: MFV MSSM (later: NMFV MSSM)
 - to fulfill b physics: large tan β , large M_{SUSY} , ...
 - to check Higgs, precision observables
 - \Rightarrow currently under study in CMS