Flavor Benchmarks

Sven Heinemeyer, IFCA (CSIC-UC)

CERN, 10/2006

1. The general idea(s)

2. Different approaches

3. One approach in more detail

4. Conclusions
1. The general idea(s)

Benchmarks: (are not a new idea . . .)

a set of parameter points in a (your favorite) model (beyond the SM)

- **Tool for BSM searches** at colliders (past, present, future)
 → often it is not feasible to scan over all parameters

- Map out the **characteristics** of the parameter space

- Take into account **all(?) possibilities**

- Ensure **compatibility** with all(?) current bounds
 - searches for new particles
 - (low-energy) flavor bounds
 - (low-energy) electroweak precision bounds
 - cold dark matter
 - . . .
Benchmarks can be used to:

- Study the performance of different detectors
- Study the performance of different experiments
- Perform very detailed studies
- Analyzing the complementarity of different experiments
- Work out synergy effects of different experiments

Prime example from the past: SPS (Snowmass points and slopes) (especially SPS 1a)

[hep-ph/0202233]
External constraints?

If a benchmark is designed to **test one sector** of a specific model

⇒ should constraints from other sectors be taken into account?

⇒ could they be easily avoided?

If a benchmark is designed to **test collider phenomenology**

then little changes that do not affect the collider phenomenology can easily avoid:

– bounds from cold dark matter
– bounds on \((g - 2)_\mu\)
– \(b\) physics constraints

Our idea here:

Study **collider phenomenology** in (SUSY) models that are compatible with

– direct **experimental** searches
– **flavor physics** constraints
– **precision observables** constraints
Our idea here:
Study collider phenomenology in (SUSY) models that are compatible with
– direct experimental searches
– flavor physics constraints
– precision observables constraints

My personal wishes:
Find/use points as described above (in the (N)MFV MSSM) . . .
that show interesting phenomenology in low- and high-energy experiments
⇒ study the complementarity of the low/high-energy experiments
⇒ study the synergy of the low/high-energy experiments
i.e. combine results from all sources to pin down the (N)MFV MSSM
. . . but this seems to be very difficult
2. Different approaches

After some discussions we agreed on a two-step process:

1. **Identify “interesting” points (“benchmarks”)** for experimental analysis at ATLAS and CMS.
 "interesting" means points in the parameter space that are "favored" by available flavor and high-energy data.

2. **Provide the tools** (to a master tool) so that everyone (especially the experimentalists from ATLAS and CMS) can check potentially "interesting" points (for joint (experiment + theory) analyses).

And eventually (3.):
Perform the analysis to investigate the collider reach and phenomenology in the “interesting/favored” points.
The broad idea how to proceed with the first step:

a) Identify the models we want to investigate.

b) Collect suggestions for the point(s) in each model.
 (The points could also be connected to a model line, showing the variation of flavor effects.)

c) Test these points, i.e. everyone (of us) should check a point against existing experimental data.

d) Identify among the "surviving" points the ones that show the potentially most interesting phenomenology.
The broad idea how to proceed with the first step:

a) **Identify the models** we want to investigate.

b) **Collect suggestions for the point(s)** in each model.
 (The points could also be connected to a model line, showing the variation of flavor effects.)

c) **Test these points**, i.e. everyone (of us) should check a point against existing experimental data.

d) **Identify** among the "surviving" points the ones that show the potentially most interesting phenomenology.

Sounds good . . .

. . . reality looked a bit different
One approach (with ATLAS):

1. Start with SPS 1a

2. **Check consistency** with *b* physics observables
 tool: evaluate flavor physics obs. (B, K, B_s) in “near MFV models”
 (more by the end of the year . . .)
 check Higgs and precision observables with FeynHiggs

3. Not fully consistent? \Rightarrow add (small?) flavor violation

 Fully consistent? \Rightarrow add as much is allowed without violating constraints

4. \Rightarrow check for new effects in high-energy analyses (ATLAS)

Status?
Ask Luca and/or Giacomo! ;-)
Another approach (with CMS):

1. Choose model: MFV MSSM
 later (hopefully) also NMFV MSSM

2. **Find points** that are in perfect **agreement with** b **physics** observables

3. **Check** against other observables (**electroweak precision, masses**)
 ⇒ build a **master tool for checks**
 (second step of the two-step process)

4. ⇒ **check for effects in high-energy analyses** (**CMS**)

Status?
See the next chapter of this talk
See the next talk by Michael Schmitt (UFL)
3. One approach in more detail

Step 1:

Model of our choice: MFV MSSM
possible extension at a later stage: NMFV MSSM

Starting point: hep-ph/0605012 [Gino Isidori, Paride Paradisi]

General feature: large $\tan \beta$, large M_{SUSY}

These points:
- pass all current b physics bounds
- pass all current SUSY collider searches
- should be checked for the Higgs sector constraints
- should be checked for electroweak precision observables

⇒ may sound trivial, but wait for NMFV MSSM!

⇒ currently under study in CMS (see next talk)
Overview about the SUSY parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>“Best” value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tan \beta$</td>
<td>30 – 50</td>
<td>40</td>
</tr>
<tr>
<td>M_A [GeV]</td>
<td>300 – 1000</td>
<td>300, 500, 800, 1000</td>
</tr>
<tr>
<td>μ [GeV]</td>
<td>500 – 1000</td>
<td>500, 1000</td>
</tr>
<tr>
<td>$M_{\tilde{q}}$ [GeV]</td>
<td>> 1000</td>
<td>1000, 2000</td>
</tr>
<tr>
<td>$M_{\tilde{t}}$</td>
<td>$1/2 \ M_{\tilde{q}}$</td>
<td></td>
</tr>
<tr>
<td>$M_{\tilde{g}}$</td>
<td>$M_{\tilde{q}}$</td>
<td></td>
</tr>
<tr>
<td>M_2 [GeV]</td>
<td></td>
<td>300, 500</td>
</tr>
<tr>
<td>M_1</td>
<td>$1/2 \ M_2$</td>
<td></td>
</tr>
</tbody>
</table>
Step 2: the master tool

⇒ a code that calls the special codes evaluating all observables

1. code: b physics

 based on hep-ph/0605012 [G. Isidori, P. Paradisi]

 → used by the CMS experimentalists

2. code: Higgs and precision observables

 → FeynHiggs [T. Hahn, S.H., W. Hollik, G. Weiglein]

 → not yet included(?)

3. code: other/complementary observables

 → anybody interested?

⇒ Let’s see how this works out . . .
4. Conclusions

- **Benchmarks** are an essential tool for collider studies

- **Our idea here:** study collider phenomenology in (SUSY) models:
 - agreement with direct experimental searches
 - agreement with flavor physics constraints
 - agreement with precision observables constraints

- **Two step process:**
 - identify such points
 - combine tools to a master tool (especially for experimentalists)

- **One approach:** SPS 1a (ATLAS)

- **Second approach (CMS):**
 - model: MFV MSSM (later: NMFV MSSM)
 - to fulfill b physics: large $\tan \beta$, large M_{SUSY}, ...
 - to check Higgs, precision observables
 \[\Rightarrow \] currently under study in CMS