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Introduction

Why consider the type I+II seesaw mechanism?

• Both the type I (heavy right-handed neutrino exchange) and the type II 
(heavy SU(2)L triplet exchange) are present in many extensions of the 
SM, such as left-right symmetric theories and SO(10) GUTs.

• Right-handed neutrinos are suggestive of grand unification. However,   
SO(10) models with type I seesaw mechanism generally fail to 
accommodate successful leptogenesis (Yν ∝ Yu ⇒ very hierarchical  
right-handed neutrino masses, with M1 ~ 10⁵ GeV).

• More generally, studies of leptogenesis and LFV are usually done in the 
framework of the type I seesaw mechanism, or assume dominance of 
one of the two seesaw mechanisms. It is interesting to investigate 
whether the generic situation where both contributions are comparable 
in size can lead to qualitatively different results.

                                             



Type I+II seesaw mechanism:

Right-handed neutrino mass matrix: 

     vR ≡〈ΔR〉 scale of B-L breaking

     ΔR = SU(2)R triplet with couplings fRij to right-handed neutrinos

vL is small since it is an induced vev: 

In theories with underlying left-right symmetry (such as SO(10) with a       ), 
one has            and            ⇒ 2 matrices of couplings Y and f

In a fundamental theory, expect Y to be related to other Yukawa couplings 
⇒ for phenomenological studies, need to reconstruct the fij as a function 
of the Yij (for a given set of low-energy neutrino parameters)

For n generations, there are    different solutions [Akhmedov, Frigerio]

ΔL = SU(2)L triplet with
couplings fLij to lepton doublets

vL ≡ 〈∆L〉 ∼ v2vR/M2
∆L

MR = fRvR

Mν = fLvL −

v2

vR

Y T f−1

R
Y ≡ M II

ν + M I
ν

Y = Y
T fL = fR

2
n

126H



The left-right symmetric seesaw formula

with f, Y complex symmetric matrices (Y invertible), can be rewritten as

with

Z complex symmetric ⇒ can be diagonalized by a complex orthogonal 
matrix OZ if its eigenvalues zi are all distinct:

Then X can be diagonalized by the same orthogonal matrix as Z, and its 
eigenvalues are the solutions of:

2 solutions          for each i ⇒ 2³ = 8 solutions for X, hence for f:

[see Akhmedov, Frigerio for an alternative reconstruction procedure]

Reconstruction of the heavy neutrino mass spectrum

Mν = fvL −

v2

vR

Y f−1Y

Z = N−1

Y
Mν(N−1

Y
)T , X = N−1

Y
f(N−1

Y
)T , NY such that Y = NY NT

Y

Z = αX − βX−1 α ≡ vL , β ≡

v2

vR

Z = OZDiag (z1, z2, z3)O
T

Z , OZOT

Z = 1

zi = αxi − βx−1

i
(i = 1, 2, 3)

f = NY OZ
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We denote the 2 solutions of                         by:

(+,+,+) refers to the solution                 ,  (+,+,–) to                 , etc 

In the large vR limit (                ):

The remaining 6 solutions correspond to mixed cases in which Mν receives 
significant contributions from both seesaw mechanisms

In the small vR limit (                ):

If Y is hierarchical,                      holds for all 8 solutions

Properties of the solutions

zi = αxi − βx−1

i

x±

i
≡

zi ±
√

z2
i

+ 4αβ

2α

(x+
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+
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+
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+
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−

3 )

f (+,+,+)
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Mν

vL

f (−,−,−)
−→ −

v2
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Y M−1
ν Y

|z3|
2 ! 4αβ
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! ±
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+
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x−
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Application to SO(10) models with two 10’s and a       in the Higgs sector

If the doublets in the      have no vev, then, in the basis of charged lepton 
mass eigenstates:

For a given choice of the yet unmeasured neutrino parameters (including 
the Majorana phases contained in Pν) and of the high energy phases 
contained in Pu, Pd and Pe, Y and Mν are known and f can be reconstructed 
as a function of the B-L breaking scale vR and of β/α

β/α = v²/vLvR ~ (MΔL/vR)² depends on details of the model. Assume β/α = 1.

Perturbativity constraint: require that the fij remain perturbative up to the 
Landau pole of the SO(10) gauge coupling (~ 2 x 10¹⁷ GeV)

⇒ constrains  β/α ≤ O(1) and restricts the range of vR 

126

W ! Y
(1)
ij 16i16j101 + Y

(2)
ij 16i16j102 + fij 16i16j126

126

Uq = PuVCKMPd

Mν = U
"
l





m1 0 0

0 m2 0

0 0 m3



Ul

Y v = U
T
q





mu 0 0

0 mc 0

0 0 mt



 Uq

Ul = PeUPMNSPν
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Figure 1: Right-handed neutrino masses as a function of vR for each of the 8 solutions (+, +, +)
to (−,−,−) in the reference case of a hierarchical light neutrino mass spectrum with m1 = 10−3

eV, β = α and no CP violation beyond the CKM phase (δ = Φu
i = Φd

i = Φν
i = Φe

i = 0). The
range of variation of vR is restricted by the requirement that f3 ≤ 1. Dotted lines indicate a
fine-tuning greater than 10% in the (3, 3) entry of the light neutrino mass matrix.
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Figure 1: Right-handed neutrino masses as a function of vR for each of the 8 solutions (+, +, +)
to (−,−,−) in the reference case of a hierarchical light neutrino mass spectrum with m1 = 10−3

eV, β = α and no CP violation beyond the CKM phase (δ = Φu
i = Φd

i = Φν
i = Φe

i = 0). The
range of variation of vR is restricted by the requirement that f3 ≤ 1. Dotted lines indicate a
fine-tuning greater than 10% in the (3, 3) entry of the light neutrino mass matrix.
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Figure 1: Right-handed neutrino masses as a function of vR for each of the 8 solutions (+, +, +)
to (−,−,−) in the reference case of a hierarchical light neutrino mass spectrum with m1 = 10−3

eV, β = α and no CP violation beyond the CKM phase (δ = Φu
i = Φd

i = Φν
i = Φe

i = 0). The
range of variation of vR is restricted by the requirement that f3 ≤ 1. Dotted lines indicate a
fine-tuning greater than 10% in the (3, 3) entry of the light neutrino mass matrix.
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Features of the right-handed neutrino spectrum

– at large vR, the solutions (+,+,+) and (–,–,–) tend to the type II (triplet 
exchange) and type I (heavy neutrino exchange) cases:

– at small vR, the type I and type II contribution compensate for each other 
in such a way that 

– 4 solutions are characterized by 

– 2 solutions are characterized by 

Mixing angles

- 2 solutions have RHN mixing angles very close to the CKM angles

- in the other 6 solutions, the mixing angles are close to the CKM angles at 
small vR, then take larger values at large vR 

M1 : M2 : M3 ∼ mu : mc : mt

M1 ≈ 5 × 10
9
GeV

M1 ≈ 10
5
GeV

(+,+,+) : M1 : M2 : M3 ∼ m1 : m2 : m3

(−,−,−) : M1 : M2 : M3 ∼ m2

u
: m2

c
: m2

t

f = Uf





f1 0 0

0 f2 0

0 0 f3



UT
f =⇒ U†

fY

Dirac couplings
in the basis of RHN

mass eigenstates



1012 1013 1014
VR !GeV"

10!2

10!1

Ufij Case """

1012 1013 1014
VR !GeV"

10!3

10!2

10!1

1

Ufij Case !""

1012 1013 1014
VR !GeV"

10!3

10!2

10!1

Ufij Case "!"

1012 1013 1014 1015
VR !GeV"

10!2

10!1

1

Ufij Case !!"

1012 1013 1014
VR !GeV"

10!3

10!2

10!1

Ufij Case ""!

1012 1013 1014 1015
VR !GeV"

10!2

10!1

Ufij Case !"!

1012 1013 1014 1015
VR !GeV"

10!2

10!1

Ufij Case "!!

1012 1013 1014 1015 1016 1017
VR !GeV"

10!2

10!1

Ufij Case !!!

Figure 2: Right-handed neutrino mixing angles as a function of vR for each of the 8 solutions
(+, +, +) to (−,−,−) in the reference case of a hierarchical light neutrino mass spectrum with
m1 = 10−3 eV, β = α and no CP violation beyond the CKM phase (δ = Φu

i = Φd
i = Φν

i = Φe
i =

0). The red [dark grey] curve corresponds to |(Uf)12|, the green [light grey] curve to |(Uf)13|,
and the blue [black] curve to |(Uf )23|.
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                           ⇒ YB determined by the decays of N1

The triplet contributes to εN1 through the vertex diagram:

                                       ⇒

The total CP asymmetry can be written [Hambye, Senjanovic; Antusch, King]:

It depends on the reconstructed fij couplings through M1 and Uf (since Y is 
expressed in the basis of RHN mass eigenstates). The high-energy phases 
enter this expression directly (in Y and Mν) and indirectly (via Uf)

Since the triplet is heavy, the dilution of the generated lepton asymmetry 
mainly depends on the effective mass parameter:

which also depends on M1 and Uf 

Leptogenesis

M1 ! M2, M3, M∆L

εNi
= ε

I

Ni
+ ε

II

Ni
[Hambye, Senjanovic]

εN1
= ε

I
N1

+ ε
II
N1

=
3

8π

∑
k,l Im [Y1kY1l (Mν)"

kl]

(Y Y †)11

M1

v2

m̃1 =
(Y Y †)11 v2

M1



CP asymmetry versus the B-L breaking scale

Hierarchical light neutrino mass spectrum with m1 = 10ˉ³ eV (and sin²θ₁₃ 
= 0.009, δ = 0) – various choices of the Majorana and high-energy phases

3 different behaviours among the 8 solutions for f

1) solutions (±,±,–) [                   ]

Leptogenesis fails to produce the observed baryon asymmetry for these 
solutions (|εN1| ≤ few 10ˉ¹¹ ⇒ no improvement wrt the type I case)

N2 decays [Di Bari;Vives] do not seem to help, at least for our choice of 
parameters: N2 decays produce an asymmetry mainly in tau leptons, but 
the asymmetry is rather small and the wash-out of the tau flavour is strong 
(                              ).

M1 ≈ 10
5
GeV

ε
τ
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−7
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Figure 6: CP asymmetry ε1 as a function of vR for the solution (−,−,−) in the case of a
hierarchical light neutrino mass spectrum with m1 = 10−3 eV, β = α, and no CP violation
beyond the CKM phase (left panel) or different choices of CP-violating phases (right panel).
On the left panel, the thin lines correspond to the contribution of right-handed neutrinos (red
[grey] curve) and of the heavy triplet (black curve).

The final baryon asymmetry is given by:

nB

s
= −1.48 × 10−3 η εN1

, (26)

where η is an efficiency factor that takes into account the initial population of right-handed
(s)neutrinos, the out-of-equilibrium condition for their decays, and the subsequent dilution of
the generated lepton asymmetry by wash-out processes [7]. For leptogenesis to be successful,
Eq. (26) should reproduce the observed baryon-to-entropy ratio nB/s = (8.7±0.3)×10−11 [29].
Detailed studies of thermal leptogenesis in the type I case (see e.g. Refs. [6, 7]) have shown
that η ≥ 0.1 over a significant portion of the parameter space; therefore thermal leptogenesis
can succesfully generate the observed cosmological baryon asymmetry for |εN1

| ∼ 10−6 (or even
for |εN1

| ∼ few × 10−7 in the case of a thermal initial population of N1 / Ñ1). Large efficiency
factors can also be obtained in the presence of both type I and type II seesaw mechanisms [27].

Figs. 6 to 8 show the absolute value of the CP asymmetry in N1 decays as a function of
vR, for three representative solutions (−,−,−), (+, +, +) and (+,−, +). Before commenting
on these results, let us note that an upper bound on εN1

can be derived from Eq. (25) [27, 28]:

|εN1
| ≤ εmax

N1
≡

3

8π

M1mmax

v2
' 2 × 10−7

(

M1

109 GeV

)

( mmax

0.05 eV

)

, (27)

where mmax ≡ max (m1, m2, m3). From this one can already conclude that, for a generic7

hierarchical light neutrino mass spectrum, the four solutions characterized by x3 = x−
3 , which

7It has been shown in Ref. [8], in the context of the type I seesaw mechanism with a strongly hierarchical
Dirac mass matrix, that for some special values of the light neutrino mass parameters, the right-handed neutrino
mass matrix exhibits a pseudo-Dirac structure, making it possible to generate the observed baryon asymmetry
through resonant leptogenesis.
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2) solutions (±,+,+)

εN1 can reach large values, even if the only input phase is the CKM phase 
(left panel), but the wash-out tends to be strong (typically                   ) 

This can be compensated for by large values of εN1, but at the price of a 
larger M1 (|εN1| ≥ 10ˉ⁵  for M1 ≥ 10¹¹ GeV) ⇒ conflict with gravitino 
overproduction in the supersymmetric case
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Figure 7: Same as Fig. 6 but for the solution (+, +, +).

give M1 ∼ 105 GeV for all values of vR, fail to generate the observed baryon asymmetry from
N1 decays (we comment at the end of this section on possible flavour effects). This is confirmed
by Fig. 6, which shows that, depending on the values of the CP-violating phases, |εN1

| ranges
from 10−14 to 2×10−11 in the (−,−,−) solution. As expected, the CP asymmetry is dominated
by the type I contribution for large values of vR, while the type I and the type II contributions
become comparable and start cancelling each other below vR ∼ 1014 GeV. The most noticeable
fact here is that εN1

(like M1) stays constant at its type I value even far away from the type I
limit.

The four solutions characterized by x3 = x+
3 , which for vR > 1013 GeV give either M1 ∼

5 × 109 GeV (case x2 = x−
2 ) or M1 > 1010 GeV (case x2 = x+

2 ), look much more promising.
Indeed, solutions (+, +, +) and (−, +, +) (case x2 = x+

2 ) yield large values of εN1
, even in

the absence of other sources of CP violation than the CKM phase (see Fig. 7). However, the
effective mass parameter m̃1 ≡ (Y Y †)11v2/M1, which controls the out-of-equilibrium condition
and the wash-out due to inverse N1 decays, tends to be rather large (typically m̃1 ∼ 10−2 eV).
The corresponding suppression of the final baryon asymmetry can be compensated for by larger
values of εN1

, but at the price of a heavier right-handed neutrino: one typically has |εN1
| > 10−5

for M1 ! 1011 GeV. Such values of M1 are in conflict with the upper limit on the reheating
temperature from gravitino overproduction, which depending on the gravitino mass and decay
modes may lie between 106 and 1010 GeV [30]. One may circumvent this problem by invoking
a non-thermal mechanism for producing right-handed (s)neutrinos after inflation, e. g. decays
of the inflaton field [31].

Solutions (+,−, +) and (−,−, +) (case x2 = x−
2 ) are in principle better candidates for a

successful thermal leptogenesis since they predict M1 ∼ 5×109 GeV, a value that can lead to a
sufficient CP asymmetry while being marginally compatible with the gravitino constraint. As
shown by Fig. 8, the CP asymmetry generally reaches a plateau above vR ∼ 1013 GeV, where
depending on the phases it can be as large as 5 × 10−7 (interestingly enough, this may solely
be due to low-energy CP-violating phases – see the right panel of Fig. 8). Such values of εN1

could be sufficient for generating the observed baryon asymmetry, provided that the wash-out

16
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3) solutions (±,–,+) [                        ]

The peaks in the left and right panels are due to a level crossing M1 = M2 ; 
there resonant leptogenesis is possible (but strong cancellation between 
the type I and type II contributions to Mν) 

εN1 can reach the few 10ˉ⁷ level (10ˉ⁶ in some cases), but the wash-out 
tends to be too important (                   )

However, different values of the input parameters (light neutrino mass 
parameters; phases) or the inclusion of corrections leading to realistic 
charged fermion masses could improve the situation
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Figure 8: Same as Fig. 6 but for the solution (+,−, +), with no CP violation beyond the CKM
phase (left panel), Φu

2 = π/4 (middle panel) and Φν
2 = π/4 (right panel).

processes are slow enough. However, the effective mass parameter m̃1 tends to be too large,
typically m̃1 > 10−2 eV. Larger values of εN1

can be obtained in the region where a strong
cancellation between the type I and type II contributions to neutrino masses occur. In the left
and right panels of Fig. 8, the peak located at vR ≈ 3 × 1012 GeV is due to a near degeneracy
between M1 and M2; there resonant leptogenesis [32] becomes possible. In the middle panel, the
enhancement of εN1

around vR = 1013 GeV is not related to any mass degeneracy and is simply
an effect of the phase Φu

2 . In this case too, the wash-out of the generated lepton asymmetry is
strong (m̃1 ≈ 0.03 eV).

Before closing this section, let us comment on possible flavour effects [33, 34, 35, 36, 37], spe-
cializing for definiteness to the type I limit of solution (−,−,−). The relevant quantities are the
CP asymmetries in the decays of one right-handed neutrino flavour Ni into one charged lepton
flavour lα, defined as εα

i ≡
[

Γ(Ni → lαH) − Γ(Ni → l̄αH#)
]

/
[

Γ(Ni → lH) + Γ(Ni → l̄H#)
]

, as
well as the parameters m̃α

i ≡ |Yiα|2v2/Mi, which control the out-of-equilibrium conditions and
the main wash-out processes. Because of the smallness of its mass, including flavour effects
in the decays of the lightest right-handed neutrino N1 [36, 37] does not improve the situation;
but it has been suggested that decays of the next-to-lightest right-handed neutrino N2 (whose
mass is M2 & 2×1010 GeV here) might lead to successful leptogenesis, without [38] or with [35]
flavour effects. One interesting possibility [35] is that N2 decays generate a large asymmetry in
a specific lepton flavour that is only mildly erased by N1 decays and inverse decays. Whether
this can happen or not depends on the values of the parameters εα

2 , m̃α
2 and m̃α

1 which we
give in Table 1, together with the other flavoured parameters for completeness. In the case
considered (hierarchical light neutrino mass spectrum with m1 = 10−3 eV, Φν

2 = π/4 and all
other CP-violating phases but the CKM phase set to zero), we find that the lepton asymmetry
is essentially generated in the tau flavour; unfortunately it is small (ετ

2 = 1.4 × 10−7) and the
wash-out by N1 decays turns out to be strong (m̃τ

1 = 2.2 × 10−2). Different choices of the
CP-violating phases might however improve the situation.

The above discussion shows that taking into account both the type I and the type II seesaw
contributions to neutrino masses opens up new possibilities for successful leptogenesis in SO(10)
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We can estimate the RHN + triplet contribution [Borzumati, Masiero; Rossi] 
to flavour violation in the slepton sector by:

where the Cij’s encapsulate the dependence on the seesaw parameters:

MU = scale where universality among soft terms is assumed (we take      
MU = 10¹⁷ GeV and MΔL = vR)

Experimental upper limits on the LFV decays li →lj γ can be turned into 
upper bounds on the Cij’s as a function of the supersymmetric mass 
parameters and of tanβ [S.L., Masina, Savoy]:

 

Lepton flavour violation
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Figure 1: Upper limits on C32, C21 in the plane (M1,mẽR
), respectively the B̃ and right slepton

masses. Gaugino and scalar universalities, µ from radiative electroweak symmetry breaking and
m0 = A0 have been assumed.

right-handed neutrino dominates - in the sense explained previously - the scale matm. There are
obviously three possibilities.

None: all the elements of the third row of R are of comparable magnitude. This class has the
following features: θatm ∼ θL

23; the scale of M3, the heaviest νc has to be below 5 · 1014 GeV;
yν is ”lopsided”; a tuning of the order of r is necessary in order to have at the same time large
atmospheric mixing and hierarchical masses. All the see-saw models which follow from a U(1)
flavour symmetry with charges of the same sign belong to this class. Indeed, it is well known
that in this case the actual values of the νc charges are not important because meff

ν depends
only on those of ν. This physical information is well encoded in R: its elements are all of the
same order but the absence of structure in R has to be payed by doing the tuning.

The heaviest, M3: rR33 ≥ R31, R32. In this case θL
23 ≈ θatm with corrections at the level of

r; again M3 < 5 · 1014 GeV and yν is ”lopsided”, but now we have naturally large atmospheric
mixing and large mass splittings, so that no tuning has to be introduced. These models necessi-
tate of a richer flavour symmetry than those above, for instance a U(1)F flavour symmetry with
positive and negative charges, which allow for holomorphic zeros in the textures.

One among the lightest, M1 or M2: rR31(32) ≥ R33, R32(31). The relevant feature of this

class is that θL
23 is no more linked to θatm. On the contrary, yν can possess small mixings so that

θL
23 could even vanish. For this class M3 ≥ r−15 · 1014 GeV - which is quite good for SO(10)

- large atmospheric mixing and large splitting is naturally realised. These interesting models
necessitate of an even richer flavour symmetry than those above: models have been studied with
several U(1)F ’s with positive and negative charges and with non-abelian flavour symmetries.

7



We can then compare the predicted Cij’s for a given solution f with the 
“experimental” upper bounds |C23| ≤ 10 (τ→μγ) and |C12| ≤ 0.1 (μ→eγ) 
[taking tanβ = 10 and m0, M1/2 ≤ O(1 TeV)]:

Due to the small CKM angles (VL = Uq), the type II contribution always 
dominates in the Cij’s, except in the large vR region of solutions (–,–,–) 
[type I limit] and (+,–,–)

The predictions lie significantly below the experimental bounds, except in 
the large vR region where, depending on the supersymmetric parameters, 
μ→eγ can exceed its present upper limit
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Figure 9: Coefficients C12 and C23 as a function of vR for the solutions (+, +, +) and (−,−,−)
in the case of a hierarchical light neutrino mass spectrum with m1 = 10−3 eV, β = α, and no
CP violation beyond the CKM phase. The green [light grey] curve corresponds to |C23|, and
the blue [black] curve to |C12|. The horizontal lines indicate the “experimental” constraints
|C23| < 10 and |C12| < 0.1 (see text).

breaking slepton mass matrices:

(m2
L̃
)ij " −

3m2
0 + A2

0

8π2
Cij , (m2

ẽR
)ij " 0 , Ae

ij " −
3

8π2
A0yei

Cij , (28)

where the coefficients Cij encapsulate the dependence on the seesaw parameters:

Cij ≡
∑

k

Y !
kiYkj ln

(

MU

Mk

)

+ 3 (ff †)ij ln

(

MU

M∆L

)

. (29)

Here MU is the scale at which universality among soft supersymmetry breaking parameters (at
least in the slepton and Higgs sector) is assumed. In the following, we take MU = 1017 GeV,
close to the Landau pole Λ10 where the theory becomes non perturbative. Neglecting the smaller
contribution of the flavour-violating A-term and working in the mass insertion approximation,
one can schematically write the branching ratio for lj → liγ as:

BR (lj → liγ)

BR (lj → liν̄iνj)
∝

|(m2
L̃
)ij |2

m̄8
L̃

tan2 β FSusy , (30)

where m̄2
L̃

is the average slepton doublet mass, and FSusy is a function of the supersymmetric
mass parameters and of tan β. The experimental upper limits BR (µ → eγ) < 1.2 × 10−11 [42]
and BR (τ → µγ) < 6.8 × 10−8 [43] can then be translated into upper bounds on the C12 and
C23 coefficients as a function of the superpartner masses and of tan β [44]. If we require that
the mSUGRA parameters m0 and M1/2 do not exceed ∼ 1 TeV, then from Fig. 3 of Ref. [45]
we can read the approximate upper bounds9 |C12| ! 0.1 and |C23| ! 10 for a benchmark value
of tanβ = 10. For different values of tan β, the upper bounds approximately scale as 10/ tanβ.

9More precisely, for tanβ = 10, one has |C12| < 0.1 (resp. |C23| < 20) for M1 < 300 GeV and 400 GeV !
m̄ẽR

! 1 TeV if A0 = 0, and for M1 ! 500 GeV and m̄ẽR
! 1 TeV if A0 = m0 + M1/2, where M1 is the bino

mass and m̄ẽR
is the average slepton singlet mass.
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Conclusions

• The possibilities to account for the observed neutrino data in the left-
right symmetric seesaw mechanism is much richer than in the cases of 
type I and type II dominance, with interesting implications for 
leptogenesis and LFV

•  In particular, the mixed solutions where both seesaw mechanisms give  
a significant contribution to neutrino masses provide new opportunities 
for successful leptogenesis in SO(10) GUTs 

• A detailed study of leptogenesis in realistic SO(10) models (including a 
correct description of charged fermion masses and taking into account 
the wash-out of the lepton asymmetry) is in progress
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Figure 3: Effect of β != α on the right-handed neutrino masses. The input parameters are the
same as in Fig. 1, except β/α = 0.01.

Let us first consider the effect of β != α. As can be seen by comparing Figs. 1 and 3, taking
β != α does not change the general shape of the solutions, but amounts to shift the curves
Mi = Mi(vR) along the horizontal axis according to vR →

√

α/β vR (an analogous statement
can be made about the curves (Uf )ij = (Uf )ij(vR)). For instance, in solution (−,−,−), the
type I limit is reached at larger vR values for β/α = 0.01 than for β = α (see the right panel of
Fig. 3). Nevertheless the values of the Mi corresponding to a plateau do not depend on β/α.
In particular, in the four solutions characterized by x3 = x−

3 , one has M1 $ 105 GeV over the
considered range of values for vR, irrespective of the value of β/α. Finally, the value of β/α has
a strong impact on the allowed range of values for vR: as can be seen in the left panel of Fig. 3,
the perturbativity constraint is more easily satisfied for large values of vR when β/α % 1. This
is due to the fact that the asymptotic value of |f33| in the small vR region,

√

β/α |(Yν)33|, is
proportional to

√

β/α. Conversely, the case β/α & 1 is excluded because the perturbativity
constraint |f33| < 1 is never satisfied, except in the type I limit of solution (−,−,−). Therefore,
perturbativity constrains the SU(2)L triplet mass to lie below the B −L brealing scale (which
might require a fine-tuning in the SU(2)L triplet mass matrix for vR % MGUT ), except in the
type I limit.

The effect of input CP-violating phases other than the CKM phase on the right-handed
neutrino masses is illustrated in Fig. 4. In general, the presence of these phases only slightly
affects the shape of the solutions, except in regions where a crossing of two mass eigenvalues
occurs. Indeed, phases can lift isolated degeneracies between two eigenvalues (the curves repel
one another instead of crossing), thus sensibly modifying the shape of the solution6. An example
of this effect is shown in Fig. 4, where the solution (+,−, +) is displayed for two different choices
of a non-zero high-energy phase, Φu

2 = π/4 (left panel) and Φd
1 = π/4 (right panel). These plots

are to be compared with the corresponding plot in Fig. 1, where a crossing between M1 and
M2 occurs at vR $ 3 × 1012 GeV. As for the right-handed neutrino mixing angles (Uf)ij , they

6The opposite situation can also happen, i.e. input CP-violating phases can induce a crossing between two
mass eigenvalues in cases where the corresponding curves do not intersect in the absence of phases.
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Figure 4: Effect of high-energy phases on the right-handed neutrino masses. The input param-
eters are the same as in Fig. 1, except Φu

2 = π/4 (left panel), Φd
1 = π/4 (right panel).

are even more sensitive to input CP-violating phases than the Mi.

Finally, the right-handed neutrino mass and mixing patterns also depend on the light neu-
trino parameters that serve as an input in the reconstruction procedure, some of which are still
unknown (m1, sign (∆m2

32), θ13, δ and the two Majorana phases contained in Pν). It has already
been shown in the type I case that particular values of these parameters can drastically modify
the pattern of right-handed neutrino masses obtained in the generic case [8]. It would be very
interesting to investigate such effects in the case considered here; however, a general study of
the dependence of the 8 right-handed neutrino spectra on the light neutrino mass parameters
is beyond the scope of this paper. We just show in passing (Fig. 5) the impact of the type of
the light neutrino mass hierarchy on right-handed neutrino masses, for the two solutions where
the effect is the most significant.

4 Leptogenesis

In the previous section, we showed on a particular SO(10) example that the spectrum of pos-
sibilities to account for the experimental neutrino data in the presence of both type I and type
II seesaw mechanisms is very rich. This has of course important implications for phenomena
in which the presence of right-handed neutrinos and/or of a heavy SU(2)L triplet plays a role,
such as leptogenesis and, in supersymmetric theories, lepton flavour violation.

In this section, we show that taking into account both seesaw contributions to neutrino
masses opens up new possibilities for successful leptogenesis in SO(10) GUTs. Since the model
we consider is not fully realistic as it leads to wrong mass relations between charged fermions,
we do not undertake a full study of leptogenesis including washout effects, but consider solely
the value of the CP asymmetry. We do not try either to maximize the asymmetry by playing
with all input parameters (in particular, we stick to a hierarchical light neutrino spectrum with
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Figure 5: Effect of the light neutrino mass hierarchy on the right-handed neutrino masses. The
input parameters are the same as in Fig. 1, except that the light neutrino mass hierarchy is
inverted, with m3 = 10−3 eV and opposite CP parities for m1 and m2.

m1 = 10−3 eV and the best fit values (21) and (22) for the oscillation parameters), but we
restrict our attention to the impact of the input CP-violating phases.

In the scenario we are considering, it is natural to assume that the lightest right-handed
neutrino is lighter than the SU(2)L triplet. Indeed, while the perturbativity constraint discussed
in Subsection 3.2 requires M∆L

! vR, M1 lies several orders of magnitude below vR. Thus, one
can safely assume that M1 ! M∆L

, in which case the lepton asymmetry is dominantly generated
in out-of-equilibrium decays of the lightest right-handed (s)neutrino. The CP asymmetry εN1

≡
[

Γ(N1 → lH) − Γ(N1 → l̄H!)
]

/
[

Γ(N1 → lH) + Γ(N1 → l̄H!)
]

receives two contributions: the
standard type I contribution εI

N1
[2, 25], and a contribution from a vertex diagram containing a

virtual triplet, εII
N1

[26, 27]. In the case M1 ! M2,3 which is relevant here, they can be written
as [27, 28]:

εI(II)
N1

=
3

8π

∑

k,l Im
[

Y1kY1l (M
I(II)
ν )!

kl

]

(Y Y †)11

M1

v2
, (24)

where M I
ν ≡ −β Y f−1Y and M II

ν ≡ αf are the type I and type II contributions to the neutrino
mass matrix, respectively. The total CP asymmetry in N1 decays then reads:

εN1
= εI

N1
+ εII

N1
=

3

8π

∑

k,l Im [Y1kY1l (Mν)!
kl]

(Y Y †)11

M1

v2
. (25)

In Eqs. (24) and (25), the Dirac couplings are expressed in the basis of charged lepton and
right-handed neutrino mass eigenstates, i.e. Y1k ≡ (U †

fYν)1k. Besides its obvious dependence
on the light neutrino mass matrix and on the phases it contains, the CP asymmetry depends
on the considered solution for the matrix f and on the input parameters (in particular on the
phases) through their influence on the values of M1 and of the right-handed neutrino mixing
angles (Uf )i1 (i = 1, 2, 3).
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parameter / lepton flavour α = e α = µ α = τ

εα
1 2.7 × 10−13 −6.0 × 10−12 −1.5 × 10−11

εα
2 5.6 × 10−11 −1.5 × 10−9 1.4 × 10−7

εα
3 −1.8 × 10−14 5.0 × 10−13 −4.5 × 10−11

m̃α
1 3.3 × 10−3 eV 1.6 × 10−2 eV 2.2 × 10−2 eV

m̃α
2 5.9 × 10−4 eV 1.1 × 10−2 eV 3.5 × 10−2 eV

m̃α
3 4.0 × 10−7 eV 1.1 × 10−5 eV 9.4 × 10−3 eV

Table 1: Parameters that control flavour effects in leptogenesis in the type I case (large vR

limit of solution (−,−,−)), in the case of a hierarchical light neutrino mass spectrum with
m1 = 10−3 eV, Φν

2 = π/4 and all other CP-violating phases but the CKM phase set to zero.

GUTs, even though, for the specific choice of input parameters made in this paper, the wash-out
processes tend to be too strong. Different choices for the light neutrino mass parameters, or
different combinations of the high-energy phases, could resolve this problem. Let us also recall
that the results presented in this section were obtained using the mass relations (17), which
need to be corrected. The inclusion of corrections leading to realistic charged fermion mass
matrices, e.g. from the 126 Higgs representation, is not expected to alter the gross qualitative
features of the right-handed neutrino mass spectrum, but might modify the numerical values
of M1 and of the right-handed neutrino mixing angles, hence the predictions for leptogenesis.

5 Lepton flavour violation

In supersymmetric extensions of the Standard Model, lepton flavour violating (LFV) pro-
cesses such as the charged lepton radiative decays lj → liγ arise from loop diagrams involv-
ing sleptons and charginos/neutralinos. The relevant flavour-violating parameters are the off-
diagonal entries of the slepton soft supersymmetry breaking mass matrices (m2

L̃
)ij, (m2

ẽR
)ij and

(me 2
RL)ij ≡ Ae

ijvd, expressed in the flavour basis defined by the charged lepton mass eigenstates.

If the supersymmetry breaking mechanism is flavour blind, flavour violation in the slepton
sector arises from radiative corrections induced by the flavour-violating couplings of heavy
states populating the theory between the Planck scale and the electroweak scale. Here we must
deal with two kinds of such couplings8: the couplings of the right-handed neutrinos [3, 40, 41],
Yki (where Y ≡ U †

fYν), and the couplings of the heavy SU(2)L triplet [39], fij . Integrating
the one-loop renormalization group equations in the lowest approximation, one obtains the
following expressions for the flavour-violating (off-diagonal) entries of the soft supersymmetry

8We do not consider the other sources of lepton flavour violation that can be present in supersymmetric GUTs,
such as the contribution of colour triplets [4] or the contribution of the SU(2)R triplet whose vev is responsible
for right-handed neutrino masses, since they are model dependent. By contrast the right-handed neutrino and
(assuming that M∆L

is known) the SU(2)L triplet contributions can be computed once the couplings fij have
been reconstructed.
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