QCD factorisation and flavour symmetries illustrated in $B_{d,s} \rightarrow KK$ decays

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France

9 October 2006

Two-body nonleptonic B decays

- B_d very much SM-like (Babar, Belle)
- B_d still room for New Physics ? (CDF, D0, LHCb)

Predict SM correlations between B_d and B_s decays and see whether these correlations are upset by New Physics

Two-body nonleptonic B decays

- B_d very much SM-like (Babar, Belle)
- B_d still room for New Physics ? (CDF, D0, LHCb)

Predict SM correlations between B_d and B_s decays and see whether these correlations are upset by New Physics

$$\mathcal{A}(B \to H) = \frac{G_F}{\sqrt{2}} \sum_i \lambda_i \, C_i(\mu) \, \langle H | \mathcal{O}_i | B \rangle(\mu)$$

To compute $\langle H|\mathcal{O}_i|B\rangle$

- (Lattice)
- Light-cone sum rules
- QCD factorisation
- Flavour symmetries

QCD factorisation

For some classes of decays, in the heavy-quark limit $m_b \to \infty$,

$$\langle H|\mathcal{O}_i|B\rangle = \left(egin{array}{c} \operatorname{Long\ distance} \\ \operatorname{Nonperturbative} \\ \operatorname{Universal} \\ \operatorname{\textit{form\ factors\ }} F \\ \operatorname{\textit{\textit{distrib\ amplitude\ }}} \phi \end{array} \right)$$

Short distance
Perturbative
Process dependent
hard-scattering
kernel T

QCD factorisation

For some classes of decays, in the heavy-quark limit $m_b \to \infty$,

$$\langle H|\mathcal{O}_i|B\rangle = \left(egin{array}{c} \operatorname{Long\ distance} \\ \operatorname{Nonperturbative} \\ \operatorname{Universal} \\ \operatorname{\textit{form\ factors}\ F} \\ \operatorname{\textit{\textit{distrib\ amplitude}\ }} \phi \end{array} \right)$$

 $\otimes \left(\begin{array}{c} \text{Short distance} \\ \text{Perturbative} \\ \text{Process dependent} \\ \textit{hard-scattering} \\ \textit{kernel T} \end{array} \right)$

- Good : $1/m_b, \alpha_s$ expansions with control of short-distance physics
- Bad : Some numerically significant long-distance $1/m_b$ corrections left out: weak annihilation, spectator-quark interaction

Flavour symmetries

- Isospin symmetry $(u \leftrightarrow d): B_d \to \pi^+\pi^-, B_d \to \pi^0\pi^0, B^- \to \pi^0\pi^-$
- *U*-spin symmetry $(d \leftrightarrow s): B_d \to \pi^+\pi^- \leftrightarrow B_s \to K^+K^-$
- Good: Global symmetries of QCD, including long- and short-distances
- Bad : Only approximate, with potentially large corrections, e.g. SU(3) symmetry O(30%)

Flavour symmetries

- Isospin symmetry $(u \leftrightarrow d): B_d \to \pi^+\pi^-, B_d \to \pi^0\pi^0, B^- \to \pi^0\pi^-$
- *U*-spin symmetry $(d \leftrightarrow s)$: $B_d \to \pi^+\pi^- \leftrightarrow B_s \to K^+K^-$
- Good: Global symmetries of QCD, including long- and short-distances
- Bad : Only approximate, with potentially large corrections, e.g. SU(3) symmetry O(30%)

Idea: Combine the two where they are accurate to extract stringent SM correlations between B_d and B_s decays Illustration: $B_d \to K^0 \bar{K}^0$ and $B_s \to KK$

S. Descotes-Genon, J. Matias and J. Virto Phys.Rev.Lett.97:061801,2006

$B_q \to K^0 \bar{K}^0$: interesting penguin decays

Conventional tree and penguin decomposition

$$ar{A} \equiv A(ar{B}_q \to K^0 ar{K}^0) = V_{ub} V_{uq}^* T^{q0} + V_{cb} V_{cq}^* P^{q0}$$
 $A \equiv A(B_q \to K^0 ar{K}^0) = V_{ub}^* V_{uq} T^{q0} + V_{cb}^* V_{cq} P^{q0}$

Only penguin diagrams no contribution from ${\it O}_1$ and ${\it O}_2$

Difference between tree and penguin from the u, c quark in loop

$B_q \to K^0 \bar{K}^0$: interesting penguin decays

Conventional tree and penguin decomposition

$$ar{A} \equiv A(ar{B}_q o K^0 ar{K}^0) = V_{ub} V_{uq}^* T^{q0} + V_{cb} V_{cq}^* P^{q0}$$
 $A \equiv A(B_q o K^0 ar{K}^0) = V_{ub}^* V_{uq} T^{q0} + V_{cb}^* V_{cq} P^{q0}$

Only penguin diagrams no contribution from \mathcal{O}_1 and \mathcal{O}_2

Difference between tree and penguin from the u, c quark in loop

 \Longrightarrow $T^{q0}-P^{q0}$ dominated by short-distance physics computed fairly accurately within QCDF

$$T^{d0} - P^{d0} = (1.09 \pm 0.43) \cdot 10^{-7} + i(-3.02 \pm 0.97) \cdot 10^{-7} \text{GeV}$$

 $T^{s0} - P^{s0} = (1.03 \pm 0.41) \cdot 10^{-7} + i(-2.85 \pm 0.93) \cdot 10^{-7} \text{GeV}$

T-P: A sum rule for $B_d \to K^0 K^0$ observables

$$A(t) = \frac{\Gamma(B_d(t) \to KK) - \Gamma(B_d(t) \to KK)}{\Gamma(B_d(t) \to K\bar{K}) + \Gamma(\bar{B}_d(t) \to K\bar{K})} = \frac{A_{dir}^{doc} \cos(\Delta M \cdot t) + A_{mix}^{doc} \sin(\Delta M \cdot t)}{\cosh(\Delta \Gamma_d t/2) - A_{\Delta}^{do} \sinh(\Delta \Gamma_d t/2)}$$
with CP asymmetries
$$\begin{cases} A_{dir}^{d0} = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2}, A_{\Delta}^{d0} + iA_{mix}^{d0} = -\frac{2e^{-i\phi_d}A^*\bar{A}}{|A|^2 + |\bar{A}|^2} \\ |A_{\Delta}^{d0}|^2 + |A_{dir}^{d0}|^2 + |A_{dir}^{d0}|^2 = 1 \end{cases}$$

T-P: A sum rule for $B_d \to K^0 \bar{K}^0$ observables

$$A(t) = \frac{\Gamma(B_d(t) \to K\bar{K}) - \Gamma(\bar{B}_d(t) \to K\bar{K})}{\Gamma(B_d(t) \to K\bar{K}) + \Gamma(\bar{B}_d(t) \to K\bar{K})} = \frac{A_{dir}^{d0} \cos(\Delta M \cdot t) + A_{mix}^{d0} \sin(\Delta M \cdot t)}{\cosh(\Delta \Gamma_d t/2) - A_{\Delta}^{d0} \sinh(\Delta \Gamma_d t/2)}$$
 with CP asymmetries
$$\begin{cases} A_{dir}^{d0} = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2}, A_{\Delta}^{d0} + iA_{mix}^{d0} = -\frac{2e^{-i\phi_d}A^*\bar{A}}{|A|^2 + |\bar{A}|^2} \\ |A_{\Delta}^{d0}|^2 + |A_{dir}^{d0}|^2 + |A_{mix}^{d0}|^2 = 1 \end{cases}$$

$$T^{d0}-P^{d0}$$
 related to $B_d \to K^0 \bar{K}^0$ observables (also true for B_s)
$$|T^{d0}-P^{d0}|^2 = \frac{BR^{d0}\times 32\pi M_{Bd}^2}{\tau_d\sqrt{M_{Bd}^2-4M_K^2}} \times \{x_1+[x_2\sin\phi_d-x_3\cos\phi_d]A_{mix}^{d0}-[x_2\cos\phi_d+x_3\sin\phi_d]A_{\Delta}^{d0}\}$$

where x_1, x_2, x_3 depend on CKM factors only, ϕ_d B- \bar{B} mixing angle

6 / 21

T-P: A sum rule for $B_d \to K^0 \bar{K}^0$ observables

$$\begin{split} A(t) &= \frac{\Gamma(B_d(t) \to K\bar{K}) - \Gamma(\bar{B}_d(t) \to K\bar{K})}{\Gamma(B_d(t) \to K\bar{K}) + \Gamma(\bar{B}_d(t) \to K\bar{K})} = \frac{A_{dir}^{d0} \cos(\Delta M \cdot t) + A_{mix}^{d0} \sin(\Delta M \cdot t)}{\cosh(\Delta \Gamma_d t/2) - A_{\Delta}^{d0} \sinh(\Delta \Gamma_d t/2)} \\ \text{with CP asymmetries} \left\{ \begin{array}{c} A_{dir}^{d0} &= \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2}, A_{\Delta}^{d0} + iA_{mix}^{d0} = -\frac{2e^{-i\phi_d}A^*\bar{A}}{|A|^2 + |\bar{A}|^2} \\ |A_{\Delta}^{d0}|^2 + |A_{dir}^{d0}|^2 + |A_{mix}^{d0}|^2 = 1 \end{array} \right. \end{split}$$

$$T^{d0}-P^{d0}$$
 related to $B_d o K^0 ar K^0$ observables (also true for B_s)

$$|T^{d0} - P^{d0}|^2 = \frac{BR^{d0} \times 32\pi M_{Bd}^2}{\tau_d \sqrt{M_{Bd}^2 - 4M_{R}^2}}$$

$$\times \{x_1 + [x_2 \sin \phi_d - x_3 \cos \phi_d] A_{mix}^{d0} - [x_2 \cos \phi_d + x_3 \sin \phi_d] A_{\Delta}^{d0} \}$$

where x_1, x_2, x_3 depend on CKM factors only, ϕ_d $B\text{-}\bar{B}$ mixing angle

- ullet SM consistency test between BR^{d0} , $|A_{dir}^{d0}|$ and A_{mix}^{d0} (id. for B_s)
- SM value of one (say $|A_{mix}^{d0}|$) from the two others (BR^{d0} and A_{dir}^{d0})

T-P: Hadronic parameters for $B_d \to K^0 \bar{K}^0$

To extract the hadronic parameters of this decay

- Unknowns |T|, |P/T| and arg(P/T)
- ullet Observables $Br=(0.96\pm0.26)\cdot10^{-6}$, A_{dir} (broad range), A_{mix}

T-P: Hadronic parameters for $B_d \to K^0 \bar{K}^0$

To extract the hadronic parameters of this decay

- Unknowns |T|, |P/T| and arg(P/T)
- Observables $Br = (0.96 \pm 0.26) \cdot 10^{-6}$, A_{dir} (broad range), T-P

But A_{mix} very hard to measure precisely, hence trade it for T - P

T-P: Hadronic parameters for $B_d \to K^0 \bar{K}^0$

To extract the hadronic parameters of this decay

- Unknowns |T|, |P/T| and arg(P/T)
- ullet Observables $Br = (0.96 \pm 0.26) \cdot 10^{-6}$, A_{dir} (broad range), T-P

But A_{mix} very hard to measure precisely, hence trade it for T-P

In the plane $P = (x_P + iy_P) \cdot 10^{-6}$ GeV

- $Br + (T P) \Longrightarrow a \text{ circle}$
- $A_{dir} + (T P) \Longrightarrow$ a strip

From left to right $A_{dir} = -0.17, -0.03, 0.10$ (QCDF: $A_{dir} \simeq 0.20$)

Intersection: hadronic parameters up to a two-fold ambiguity

$B_d o K^0 ar K^0$ and $B_s o K^0 ar K^0$: *U*-spin

Final state $K^0\bar{K}^0$ invariant \Longrightarrow Most long-distance effects (rescattering) identical

$B_d o K^0 ar K^0$ and $B_s o K^0 ar K^0$: *U*-spin

Final state $K^0\bar{K}^0$ invariant \Longrightarrow Most long-distance effects (rescattering) identical

U-spin breaking only in a few places :

• Difference in form factors $f = M_{B_s}^2 F_0^{\bar{B}_s \to K}(0)/[M_{B_d}^2 F_0^{\bar{B}_d \to K}(0)]$

$B_d o K^0 ar K^0$ and $B_s o K^0 ar K^0$: *U*-spin

Final state $K^0\bar{K}^0$ invariant \Longrightarrow Most long-distance effects (rescattering) identical

U-spin breaking only in a few places :

- Difference in form factors $f = M_{B_s}^2 F_0^{\bar{B}_s \to K}(0)/[M_{B_d}^2 F_0^{\bar{B}_d \to K}(0)]$
- ullet Few processes sensitive to the light quark in $B_{d,s}$ -meson

$B_d \to K^0 \bar{K}^0$ and $B_s \to K^0 \bar{K}^0$: U-spin

Final state $K^0\bar{K}^0$ invariant ⇒Most long-distance effects (rescattering) identical

U-spin breaking only in a few places:

- Difference in form factors $f = M_{B_s}^2 F_0^{\bar{B}_s \to K}(0)/[M_{B_d}^2 F_0^{\bar{B}_d \to K}(0)]$
- ullet Few processes sensitive to the light quark in $B_{d,s}$ -meson

Hard-spectator scattering $(B_d \text{ and } B_s \text{ distribution amplitudes})$

Weak annihilation (gluon emission off light quark)

$B_d o K^0 ar K^0$ and $B_s o K^0 ar K^0$: QCDF

In QCD factorisation

$$\begin{split} \frac{P^{s0}}{fP^{d0}} &= 1 + \frac{A^d_{KK}}{P^{d0}} \left\{ \delta \alpha_4^c - \frac{\delta \alpha_{4EW}^c}{2} + \delta \beta_3^c + 2\delta \beta_4^c - \frac{\delta \beta_{3EW}^c}{2} - \delta \beta_{4EW}^c \right\} \\ \frac{T^{s0}}{fT^{d0}} &= 1 + \frac{A^d_{KK}}{T^{d0}} \left\{ \delta \alpha_4^u - \frac{\delta \alpha_{4EW}^u}{2} + \delta \beta_3^u + 2\delta \beta_4^u - \frac{\delta \beta_{3EW}^u}{2} - \delta \beta_{4EW}^u \right\} \\ &\qquad \qquad \text{with normalisation } A^q_{KK} &= M^2_{B_a} F_0^{\bar{B}_q \to K}(0) f_K G_F / \sqrt{2} \end{split}$$

$B_d o K^0 ar K^0$ and $B_s o K^0 ar K^0$: QCDF

In QCD factorisation

$$\begin{split} \frac{P^{s0}}{fP^{d0}} &= 1 + \frac{A^d_{KK}}{P^{d0}} \left\{ \delta \alpha^c_4 - \frac{\delta \alpha^c_{4EW}}{2} + \delta \beta^c_3 + 2\delta \beta^c_4 - \frac{\delta \beta^c_{3EW}}{2} - \delta \beta^c_{4EW} \right\} \\ \frac{T^{s0}}{fT^{d0}} &= 1 + \frac{A^d_{KK}}{T^{d0}} \left\{ \delta \alpha^u_4 - \frac{\delta \alpha^u_{4EW}}{2} + \delta \beta^u_3 + 2\delta \beta^u_4 - \frac{\delta \beta^u_{3EW}}{2} - \delta \beta^u_{4EW} \right\} \\ & \text{with normalisation } A^q_{KK} = M^2_{B_q} F_0^{\bar{B}_q \to K}(0) f_K G_F / \sqrt{2} \end{split}$$

U-spin breaking in very few places

- factorisable ratio $f=M_{B_s}^2F_0^{\bar{B}_s\to K}(0)/[M_{B_d}^2F_0^{\bar{B}_d\to K}(0)]$
- $\delta \alpha_i = \alpha_i^p \big|_{B_s} \alpha_i^p \big|_{B_d}$: hard-spectator scattering
- $\delta \beta_i = \beta_i^p \big|_{B_s} \beta_i^p \big|_{B_d}$: weak annihilation

 \Longrightarrow Very small differences in agreement with U-spin arguments

Reliable QCDF bounds :
$$\left|\frac{P^{s0}}{fP^{d0}} - 1\right| \leq 3\%$$
 and $\left|\frac{T^{s0}}{fT^{d0}} - 1\right| \leq 3\%$

$B_d \to K^0 \bar{K}^0$ and $B_s \to K^+ K^-$: Flavour sym.

U-spin and isospin $B_s o K^+K^-$ penguin related to P^{d0} \Longrightarrow Most long-distance effects are the same

$B_d \to K^0 \bar{K}^0$ and $B_s \to K^+ K^-$: Flavour sym.

U-spin and isospin $B_s o K^+K^-$ penguin related to P^{d0} \Longrightarrow Most long-distance effects are the same

Only a few places where nature of spectator quark matters

- Factorisable ratio f
- ullet $\delta lpha$: Hard-spectator scattering
- ullet δeta : Annihilation with gluon emission from light quark in $B_{d,s}$ meson
- Electroweak corrections

$B_d \to K^0 \bar{K}^0$ and $B_c \to K^+ K^-$: QCDF

Penguin relation confirmed by QCDF : only EW terms + small $\delta\alpha, \delta\beta$ $\frac{P^{s\pm}}{6000} = 1 + \frac{A_{KK}^d}{D_{c0}^{d0}}$ $\times \left\{ \frac{3}{2} (\alpha_{4EW}^c + \beta_{4EW}^c) + \delta \alpha_4^c + \delta \alpha_{4EW}^c + \delta \beta_3^c + 2\delta \beta_4^c - \frac{1}{2} (\delta \beta_{3EW}^c - \delta \beta_{4EW}^c) \right\}$

Reliable QCDF bound :
$$\left| \frac{P^{s\pm}}{fP^{d0}} - 1 \right| \leq 2\%$$

$B_d \to K^0 \bar{K}^0$ and $B_s \to K^+ K^-$: QCDF

Penguin relation confirmed by QCDF : only EW terms + small $\delta\alpha, \delta\beta$ $\frac{P^{s\pm}}{fP^{d0}} = 1 + \frac{A^d_{KK}}{P^{d0}} \times \left\{ \frac{3}{2} (\alpha^c_{4EW} + \beta^c_{4EW}) + \delta\alpha^c_4 + \delta\alpha^c_{4EW} + \delta\beta^c_3 + 2\delta\beta^c_4 - \frac{1}{2} (\delta\beta^c_{3EW} - \delta\beta^c_{4EW}) \right\}$

Reliable QCDF bound :
$$\left| \frac{P^{s\pm}}{fP^{d0}} - 1 \right| \leq 2\%$$

No such simple relation for the tree part Some related contributions but O_1 tree contribution to $B_s \to K^+K^-$ unmatched

- QCDF estimate of O_1 term in $T^{s\pm}$: $\left| \frac{T^{s\pm}}{A^s_{KK}\bar{\alpha}_1} 1 \frac{T^{d0}}{A^d_{KK}\bar{\alpha}_1} \right| \leq 4\%$
- Cabibbo suppressed in $B_s \to K^+K^-$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - かりの

Hadronic parameters for $B_s \to K^+K^-$

Take same form factors as QCDF, and CKM factors
$$\lambda_p^{(q)} = V_{pb}V_{pq}^*$$
 $\lambda_u^{(d)} = 0.0038 \cdot e^{-i\gamma}$ $\lambda_u^{(s)} = 0.00088 \cdot e^{-i\gamma}$ and $\gamma = 62^\circ$ $\lambda_c^{(d)} = -0.0094$ $\lambda_c^{(s)} = 0.04$

 $B_d \to K^0 \bar{K}^0$: Br. A_{dir} , $T - P \Longrightarrow Hadronic parameters$ \Longrightarrow Hadronic parameters for $B_s \to K^+K^-$ from bounds stretched to 5%

A_{dir}^{d0}	$ T^{s\pm} imes 10^6$	$ P^{s\pm}/T^{s\pm} $	$arg(P^{s\pm}/T^{s\pm})$
-0.2	12.7 ± 2.8	0.09 ± 0.03	(45 ± 33)°
-0.1	12.1 ± 2.7	0.10 ± 0.03	$(78 \pm 27)^{\circ}$
0	11.5 ± 2.6	0.10 ± 0.03	$(105\pm15)^\circ$
0.1	11.1 ± 2.6	0.11 ± 0.03	$(137 \pm 27)^{\circ}$
0.2	10.8 ± 2.6	0.11 ± 0.03	$(180\pm10)^\circ$

Two-fold degeneracy in (T^{d0}, P^{d0})

Two solutions for $(T^{s\pm}, P^{s\pm})$:

- Similar $|T^{s\pm}|$ and $|P^{s\pm}/T^{s\pm}|$
- Solution used : $20^{\circ} \le \arg(P^{s\pm}/T^{s\pm}) \le 180^{\circ}$
- ullet 2nd sol : $-150^{\circ} \leq \operatorname{arg}(P^{s\pm}/T^{s\pm}) \leq 20^{\circ}$

Two-fold degeneracy in (T^{d0}, P^{d0})

Two solutions for $(T^{s\pm}, P^{s\pm})$:

- Similar $|T^{s\pm}|$ and $|P^{s\pm}/T^{s\pm}|$
- Solution used : $20^{\circ} \leq \arg(P^{s\pm}/T^{s\pm}) \leq 180^{\circ}$
 - 2nd sol : $-150^{\circ} < \arg(P^{s\pm}/T^{s\pm}) < 20^{\circ}$

HFAG on
$$B_d o \pi^+\pi^-$$
 data $BR = (5.0 \pm 0.4) \times 10^{-6}$ $A_{dir} = -0.33 \pm 0.11$ $A_{mix} = 0.49 \pm 0.12$

$$\begin{cases} R = (5.0 \pm 0.4) \times 10^{-6} \\ A_{dir} = -0.33 \pm 0.11 \\ A_{mix} = 0.49 \pm 0.12 \end{cases} \} \Longrightarrow \begin{cases} |T_{\pi\pi}^{d\pm}| = (5.48 \pm 0.42) \times 10^{-6} \\ |P_{\pi\pi}^{d\pm}/T_{\pi\pi}^{d\pm}| = 0.13 \pm 0.05 \\ \arg\left(P_{\pi\pi}^{d\pm}/T_{\pi\pi}^{d\pm}\right) = (131 \pm 18)^{\circ} \end{cases}$$

Two-fold degeneracy in (T^{d0}, P^{d0})

Two solutions for $(T^{s\pm}, P^{s\pm})$:

- Similar $|T^{s\pm}|$ and $|P^{s\pm}/T^{s\pm}|$
- Solution used : $20^{\circ} \leq \arg(P^{s\pm}/T^{s\pm}) \leq 180^{\circ}$
 - 2nd sol : $-150^{\circ} < \arg(P^{s\pm}/T^{s\pm}) < 20^{\circ}$

HFAG on
$$B_d \to \pi^+\pi^-$$
 data $BR = (5.0 \pm 0.4) \times 10^{-6}$ $A_{dir} = -0.33 \pm 0.11$ $A_{mix} = 0.49 \pm 0.12$ \Longrightarrow

$$\begin{array}{l} BR = (5.0 \pm 0.4) \times 10^{-6} \\ A_{dir} = -0.33 \pm 0.11 \\ A_{mix} = 0.49 \pm 0.12 \end{array} \end{array} \\ \} \Longrightarrow \left\{ \begin{array}{l} |T_{\pi\pi}^{d\pm}| = (5.48 \pm 0.42) \times 10^{-6} \\ |P_{\pi\pi}^{d\pm}/T_{\pi\pi}^{d\pm}| = 0.13 \pm 0.05 \\ \arg\left(P_{\pi\pi}^{d\pm}/T_{\pi\pi}^{d\pm}\right) = (131 \pm 18)^{\circ} \end{array} \right.$$

Approximate *U*-spin $B_d \to \pi^+\pi^-/B_s \to K^+K^-$

- Discard 2nd sol: $arg(P^{s\pm}/T^{s\pm})$ should be positive
- Favours sol used with $A_{dir}^{d0} > 0$

 $(P^{s\pm},T^{s\pm})$ yields *U*-spin breaking between $ar{B}_s o K^+K^-$ and $ar{B}_d o \pi^+\pi^-$

$$\xi = \left| \frac{P^{s\pm}}{T^{s\pm}} \frac{T_{\pi\pi}^{d\pm}}{P_{\pi\pi}^{d\pm}} \right| = 0.8 \pm 0.4$$

 $(P^{s\pm},T^{s\pm})$ yields *U*-spin breaking between $\bar{B}_s o K^+K^-$ and $\bar{B}_d o \pi^+\pi^-$

$$\xi = \left| \frac{P^{s\pm}}{T^{s\pm}} \frac{T_{\pi\pi}^{d\pm}}{P_{\pi\pi}^{d\pm}} \right| = 0.8 \pm 0.4$$

A_{dir}^{d0}	$BR^{s\pm} imes 10^6$	$A_{dir}^{s\pm} \times 10^2$	$A_{mix}^{s\pm} \times 10^2$
-0.2	$21.9 \pm 7.9 \pm 4.3$	24.3 ± 18.4	24.7 ± 15.5
-0.1	$19.6 \pm 7.3 \pm 4.2$	35.7 ± 14.4	7.7 ± 15.7
0	$17.8 \pm 6.0 \pm 3.7$	37.0 ± 12.3	-9.3 ± 10.6
0.1	$16.4 \pm 5.7 \pm 3.3$	29.7 ± 19.9	-26.3 ± 15.6
0.2	$15.4 \pm 5.6 \pm 3.1$	6.8 ± 28.9	-40.2 ± 14.6

 $(P^{s\pm},T^{s\pm})$ yields *U*-spin breaking between $ar{B}_s o K^+K^-$ and $ar{B}_d o \pi^+\pi^-$

$$\xi = \left| \frac{P^{s\pm}}{T^{s\pm}} \frac{T_{\pi\pi}^{d\pm}}{P_{\pi\pi}^{d\pm}} \right| = 0.8 \pm 0.4$$

A_{dir}^{d0}	$BR^{s\pm} imes 10^6$	$A_{dir}^{s\pm} \times 10^2$	$A_{mix}^{s\pm} \times 10^2$
-0.2	$21.9 \pm 7.9 \pm 4.3$	24.3 ± 18.4	24.7 ± 15.5
-0.1	$19.6 \pm 7.3 \pm 4.2$	35.7 ± 14.4	7.7 ± 15.7
0	$17.8 \pm 6.0 \pm 3.7$	37.0 ± 12.3	-9.3 ± 10.6
0.1	$16.4 \pm 5.7 \pm 3.3$	29.7 ± 19.9	-26.3 ± 15.6
0.2	$15.4 \pm 5.6 \pm 3.1$	6.8 ± 28.9	-40.2 ± 14.6

- *U*-spin on $B_d \to \pi^+\pi^-$: $A^{s\pm}_{mix} < 0$ and $\arg \frac{P^{s\pm}}{T^{s\pm}} \simeq 130^\circ \Longrightarrow A^{d0}_{dir} \ge 0$
- QCDF alone : $A_{dir}^{d0} \simeq 20\%$
- ullet Babar : $A_{dir}^{d0} = -0.40 \pm 0.41 \pm 0.06$ [hep-ex/0608036]

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 - 夕 Q (C)

 $(P^{s\pm}, T^{s\pm})$ yields *U*-spin breaking between $\bar{B}_s \to K^+K^-$ and $\bar{B}_d \to \pi^+\pi^-$

$$\xi = \left| \frac{P^{s\pm}}{T^{s\pm}} \frac{T^{d\pm}_{\pi\pi}}{P^{d\pm}_{\pi\pi}} \right| = 0.8 \pm 0.4$$

A_{dir}^{d0}	$BR^{s\pm} imes 10^6$	$A_{dir}^{s\pm} \times 10^2$	$A_{mix}^{s\pm} \times 10^2$
-0.2	$21.9 \pm 7.9 \pm 4.3$	24.3 ± 18.4	24.7 ± 15.5
-0.1	$19.6 \pm 7.3 \pm 4.2$	35.7 ± 14.4	7.7 ± 15.7
0	$17.8 \pm 6.0 \pm 3.7$	37.0 ± 12.3	-9.3 ± 10.6
0.1	$16.4 \pm 5.7 \pm 3.3$	29.7 ± 19.9	-26.3 ± 15.6
0.2	$15.4 \pm 5.6 \pm 3.1$	6.8 ± 28.9	-40.2 ± 14.6

- *U*-spin on $B_d \to \pi^+\pi^-$: $A_{mix}^{s\pm} < 0$ and $\arg \frac{P^{s\pm}}{\tau_{s\pm}} \simeq 130^\circ \Longrightarrow A_{dir}^{d0} \ge 0$
- QCDF alone : $A_{dir}^{d0} \simeq 20\%$
- Babar : $A_{dir}^{d0} = -0.40 \pm 0.41 \pm 0.06$ [hep-ex/0608036]

CDF measurement [Beauty 2006]: $BR^{s\pm} = (24.4 \pm 1.4 \pm 4.6) \times 10^{-6}$

Observables in $B_s \to K^0 \bar{K}^0$

 $B_d \to K^0 \bar{K}^0$: Br, A_{dir} , $T-P \Longrightarrow$ Hadronic parameters \Longrightarrow Hadronic parameters for $B_s \to K^0 \bar{K}^0$ from bounds stretched to 5%

A_{dir}^{d0}	$BR^{s0} \times 10^6$	$A_{dir}^{s0} \times 10^2$	$A_{mix}^{s0} \times 10^2$
-0.2	$18.4 \pm 6.5 \pm 3.6$	0.8 ± 0.3	-0.3 ± 0.8
-0.1	$18.2 \pm 6.4 \pm 3.6$	0.4 ± 0.3	-0.7 ± 0.7
0	$18.1 \pm 6.3 \pm 3.6$	0 ± 0.3	-0.8 ± 0.7
0.1	$18.2 \pm 6.4 \pm 3.6$	-0.4 ± 0.3	-0.7 ± 0.7
0.2	$18.4 \pm 6.5 \pm 3.6$	-0.8 ± 0.3	-0.3 ± 0.8

- Very small asymmetries, but BR very stable within SM
- All constraints derived from SM relation between $b \to d$ and $b \to s$ and should be upset by New Physics

↓□▶ ↓□▶ ↓ □▶ ↓ □ ▶ ↓□ ♥ ♀○

Conclusion

Improve our understanding of B-decays by combining two theoretical tools

QCD factorisation and flavour symmetries

- Stringent SM correlations between B_d and B_s sector (altered by NP)
- Flavour symmetry helps to deal with $1/m_b$ -suppressed but numerically significant contributions
- QCD factorisation assesses more precisely some poorly known SU(3)-breaking effects

Conclusion

Illustration with $B_d o K^0 \bar K^0$, which can be related to $B_s o K \bar K$

- \bullet $T^{d0}-P^{d0}$ accurately known in QCDF and related to observables
- $Br(B_d \to K^0 \bar{K}^0)$ (measured) and A_{dir}^{d0} (loose range, expected ≥ 0) enough to fix tree and penguin
- ullet Large and correlated asymmetries in $B_d o K^0 ar K^0$ and $B_s o K^+ K^-$
- Improved determination of *U*-spin ratios
- Clean SM predictions (improvable with f and A_{dir}^{d0})

$$Br(B_s \to K^+ K^-) = (20 \pm 8 \pm 4 \pm 2) \cdot 10^{-6}$$
 (OK with CDF)
 $Br(B_s \to K^0 \bar{K}^0) = (18 \pm 6 \pm 4 \pm 2) \cdot 10^{-6}$

Conclusion

Illustration with $B_d o K^0 \bar K^0$, which can be related to $B_s o K \bar K$

- \bullet $T^{d0}-P^{d0}$ accurately known in QCDF and related to observables
- $Br(B_d \to K^0 \bar{K}^0)$ (measured) and A_{dir}^{d0} (loose range, expected ≥ 0) enough to fix tree and penguin
- ullet Large and correlated asymmetries in $B_d o K^0 ar K^0$ and $B_s o K^+ K^-$
- ullet Improved determination of U-spin ratios
- Clean SM predictions (improvable with f and A_{dir}^{d0})

$$Br(B_s \to K^+ K^-) = (20 \pm 8 \pm 4 \pm 2) \cdot 10^{-6}$$
 (OK with CDF)
 $Br(B_s \to K^0 \bar{K}^0) = (18 \pm 6 \pm 4 \pm 2) \cdot 10^{-6}$

Experiment : More accurate A_{dir}^{d0} ? More B_s observables ?

Theory: Improved $f = \frac{M_{B_s}^2 F_0^{B_s \to K}(0)}{[M_{B_d}^2 F_0^{\overline{B}_d \to K}(0)]}$? Application to other modes?

Backup

Comparing QCDF and our approach

Main uncertainties from long-distance (IR-divergent) terms

QCD factorisation : Source of substantial errors to model

Observable	QCDF default set	QCDF S4
$BR^{s0} \times 10^6$	$24.7^{+2.5+13.7+2.6+25.6}_{-2.4-9.2-2.9-9.8}$	38.3
$A_{dir}^{s0} \times 10^2$	$0.9^{+0.2+0.2+0.1+0.2}_{-0.2-0.2-0.1-0.3}$	0.6
$BR^{s\pm} \times 10^6$	$22.7_{-3.2-8.4-2.0-9.1}^{+3.5+12.7+2.0+24.1}$	36.1
$A_{dir}^{s\pm} \times 10^2$	$4.0^{+1.0+2.0+0.5+10.4}_{-1.0-2.3-0.5-11.3}$	-4.7

Beneke and Neubert, Nucl. Phys. B675:333-415,2003

Our approach : Extracted from other flavour-related decays

A_{dir}^{d0}	$BR^{s0} \times 10^6$	$A_{dir}^{s0} \times 10^2$	$BR^{s\pm} imes 10^6$	$A_{dir}^{s\pm} \times 10^2$
-0.2	$18.4 \pm 6.5 \pm 3.6$	0.8 ± 0.3	$21.9 \pm 7.9 \pm 4.3$	24.3 ± 18.4
-0.1	$18.2 \pm 6.4 \pm 3.6$	0.4 ± 0.3	$19.6 \pm 7.3 \pm 4.2$	$\textbf{35.7} \pm \textbf{14.4}$
0	$18.1 \pm 6.3 \pm 3.6$	0 ± 0.3	$17.8 \pm 6.0 \pm 3.7$	37.0 ± 12.3
0.1	$18.2 \pm 6.4 \pm 3.6$	-0.4 ± 0.3	$16.4 \pm 5.7 \pm 3.3$	29.7 ± 19.9
0.2	$18.4 \pm 6.5 \pm 3.6$	-0.8 ± 0.3	$15.4 \pm 5.6 \pm 3.1$	6.8 ± 28.9

$$A_{\it dir}^{\it d0} = -0.40 \pm 0.41 \pm 0.06 \; [{\sf BaBar}] \;\;\; BR^{\it s\pm} = (24.4 \pm 1.4 \pm 4.6) \times 10^{-6} \; [{\sf CDF}]$$

Comparing flavour symmetries and our approach

Quantitative statement about *U*-spin breaking

Flavour symmetries: guesstimated fudge factors

$$\xi = \left| \frac{P^{s\pm}}{T^{s\pm}} \times \frac{T^{d\pm}_{\pi\pi}}{P^{d\pm}_{\pi\pi}} \right| = 1.0 \pm 0.2 \quad \text{(assumed)}$$

$$R_c = \left| \frac{T^{s\pm}}{T^{d\pm}_{\pi\pi}} \right| = 1.76 \pm 0.17 \quad \text{(sum rule)}$$

$$4.2 \cdot 10^{-6} \le BR^{s\pm} \le 61.9 \cdot 10^{-6}$$

- S. Baek, D. London, J. Matias, J. Virto, JHEP 0602:027,2006
- Our approach: Estimate through QCDF analysis of U-spin relations

$$\xi = 0.8 \pm 0.4$$
 (computed)
 $R_c = 2.0 \pm 0.8$ (computed)
 $BR^{s\pm} = (20 \pm 8 \pm 4 \pm 2) \cdot 10^{-6}$

Dependence on γ

- Almost no dependence of predictions for CP asymmetries in $B_s \to K \bar{K}^0$ and mixed asymmetry in $B_s \to K^+ K^-$
- A limited sensitivity of order 10% for the other observables, e.g. if we take $A_{dir}^{d0}=0$

Observable	$\gamma=62^{\circ}$	$\gamma = 68^{\circ}$
$BR^{s0} imes 10^6$	$18.1 \pm 6.3 \pm 3.6$	$17.0 \pm 5.9 \pm 3.6$
$BR^{s\pm} imes 10^6$	$17.8 \pm 6.0 \pm 3.6$	$17.1 \pm 5.8 \pm 3.6$
$A_{dir}^{s\pm} \times 10^2$	37.0 ± 12.3	40.5 ± 12.5

⇒Currently under investigation