Study of $B_s^0 \rightarrow \mu^+ \mu^-$ in CMS

Christina Eggel
(ETH Zurich and Paul Scherrer Institute)

2006/10/09

- Introduction
- The CMS Experiment
- Analysis
Introduction

- **Decays highly suppressed** in Standard Model (Buras, 2003)
 - effective FCNC
 - helicity suppression
 - $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = (3.42 \pm 0.54) \times 10^{-9}
 \mathcal{B}(B_d^0 \rightarrow \mu^+\mu^-) = (1.00 \pm 0.14) \times 10^{-10}$

- **Sensitivity to new physics**
 - 2HDM: $\mathcal{B} \propto (\tan \beta)^4, m_{H^+}$; MSSM: $\mathcal{B} \propto (\tan \beta)^6$
 - ‘Measurement’ of $\tan \beta$ (Kane, et al. ph/0310042)

- $B_s^0 \rightarrow \mu^+\mu^-$ Cabibbo-favored over $B_d^0 \rightarrow \mu^+\mu^-$
 - not true for non-minimal flavor violation
 - mass resolution critical!

- **This decay channel**
 - not B physics, but a search for ‘new physics’
 - well suited for early CMS data (with pixel detector)
State of the art

• All decay channels beyond the reach of experiments:

<table>
<thead>
<tr>
<th>Mode</th>
<th>$B_s^0 \rightarrow \mu^+ \mu^-$</th>
<th>$B_d^0 \rightarrow \mu^+ \mu^-$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM Expect.</td>
<td>3.5×10^{-9}</td>
<td>1.0×10^{-10}</td>
<td>Buras, 2003</td>
</tr>
<tr>
<td>CLEO</td>
<td>-</td>
<td>6.1×10^{-7}</td>
<td>PRD62, 091102</td>
</tr>
<tr>
<td>BELLE</td>
<td>-</td>
<td>1.6×10^{-7}</td>
<td>PRD68, 111101</td>
</tr>
<tr>
<td>CDF</td>
<td>5.8×10^{-7}</td>
<td>1.5×10^{-7}</td>
<td>PRL93, 032001</td>
</tr>
<tr>
<td>D0</td>
<td>4.1×10^{-7}</td>
<td>-</td>
<td>PRL94, 071802</td>
</tr>
<tr>
<td>BABAR</td>
<td>-</td>
<td>0.61×10^{-7}</td>
<td>PRL94, 221803</td>
</tr>
<tr>
<td>CDF</td>
<td>1.5×10^{-7}</td>
<td>0.39×10^{-7}</td>
<td>PRL95, 221805 + Err.</td>
</tr>
<tr>
<td>CDF</td>
<td>0.8×10^{-7}</td>
<td>0.23×10^{-7}</td>
<td>CDF public note 8176</td>
</tr>
</tbody>
</table>

• B-factories search also for
 - $B^0 \rightarrow e^+ e^-$
 - $B^0 \rightarrow e^\pm \mu^\mp$

• SM branching ratio is very low:
 - $b\bar{b}$ cross section at LHC $\sim 10 \times$ larger than at Tevatron
 - Events can be triggered at high luminosity
The CMS Experiment

- The Compact Muon Solenoid
 - Length 22 m, diameter 15 m, 14 kton
 - Magnetic field 4 T

- Muon system
 - DT, CSC, RPC
 - $p_{\perp} > 3$ GeV

- All-silicon tracker
 - $|\eta| < 2.5$
 - pixel: 3 layers
 - strip tracker: 10 layers

- Pixel detector startup plans
 - 2007: minimal commissioning system
 - 2008: three layers for first first physics run
The CMS Tracker

- All-silicon tracker configuration
 - Few measurement layers
 - Very precise measurements

- Pixel Detector
 - hit resolution: 10--15 µm

- Silicon Strip Detector
 - 10--14 points

- Resolution:

Christina Eggel Study of $B^0_s \rightarrow \mu^+ \mu^-$ in CMS (2006/10/09, Flavor in the era of the LHC)
Overview

- Search for a very rare decay
 - Clean experimental signature
 - Efficiency and background reduction

- b-hadrons produced in
 - gluon splitting
 - flavor excitation
 - gluon-gluon fusion

- Background composition
 - two independent semileptonic B decays
 (mostly from gluon splitting)
 - rare single B decays

- Background reduction in analysis
 - 2 final state muons consistent with one decay vertex
 - large (transverse) flight length
 - isolation of dimuon system
Event Samples

- Full MC simulation study for $\mathcal{L} = 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
 - Including 5 pile-up events

- Signal MC sample
 - 20k signal events
 - Minimum bias QCD events

- Background MC sample
 - 15k background events
 - Minimum bias QCD events
 - 2 muons on generator level, $p_\perp > 3 \text{GeV}, |\eta| < 2.4, 0.3 < \Delta R(\mu\mu) < 1.2$

- Rare decays with PYTHIA (phasespace)
 - $B_d \rightarrow \pi^0 \mu^+ \mu^-$
 - $B^+ \rightarrow \mu^+ \mu^- \mu^+ \nu_\mu$

for first studies (with full simulation)
Trigger Strategy

- CMS has two-level trigger architecture

- Level 1
 - muons and calorimeters
 - Latency: $3.2 \mu s$
 - $40 \text{ MHz} \rightarrow 100 \text{ kHz}$

- High-level trigger (HLT)
 - fast (local) reconstruction
 - $100 \text{ kHz} \rightarrow 100 \text{ Hz}$

- B-physics triggers
 - Level 1: single- or di-muon trigger
 - single-muon: $p_\perp > 14 \text{ GeV}$
 - di-muons: $p_\perp > 3 \text{ GeV}$
 - HLT: exclusive and inclusive b, c triggers at $\sim 5 \text{ Hz}$
 - exclusive B decays: partial (local) reconstruction

Christina Eggel
Study of $B_s^0 \rightarrow \mu^+ \mu^-$ in CMS (2006/10/09, Flavor in the era of the LHC)
High-level trigger selection study

- Primary vertex reconstruction with pixel detector
 - use three most probable vertices

- Regional track reconstruction in cones around L1-muon candidates
 - partial reconstruction using ≤ 6 hits
 - $p_\perp > 4$ GeV

- Track pairs
 - mass windows for signal (and background)
 - (un)like sign charge

- Vertex fit
 - $\chi^2 < 20$
 - Decay flight length $l_{3d} > 150 \mu$m

\Rightarrow HLT accept rate < 1.7 Hz

Christina Eggel
Study of $B_s^0 \rightarrow \mu^+ \mu^-$ in CMS (2006/10/09, Flavor in the era of the LHC)
Analysis: Variables

- Decay flight length significance \(l_{xy}/\sigma_{xy} \)
 - transverse plane: \(l_{xy}/\sigma_{xy} > 18 \)

- Muon separation in \(\eta\phi \):
 \[
 \Delta R(\mu\mu) = \sqrt{(\eta_{\mu_1} - \eta_{\mu_2})^2 + (\phi_{\mu_1} - \phi_{\mu_2})^2}
 \]
 - \(0.3 < \Delta R(\mu\mu) < 1.2 \)

- Isolation of muon pair
 \[
 I = \frac{p_\perp(B_s)}{p_\perp(B_s) + \sum_{trk} |p_\perp|}
 \]
 tracks in cone with \(r = \sqrt{\eta^2 + \phi^2} < 1.0 \) and \(p_\perp > 0.9 \text{ GeV} \)
 - \(I > 0.85 \)

- Secondary vertex
 - Pointing angle: \(\cos(\alpha) > 0.995 \)
 - vertex fit \(\chi^2 < 1 \)
Mass Reconstruction

- **Fit with two Gaussians**

<table>
<thead>
<tr>
<th>Gaussian</th>
<th>Narrow</th>
<th>Wide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>5372.5 ± 1.3</td>
<td>5398.8 ± 3.3</td>
</tr>
<tr>
<td>Sigma</td>
<td>32.1 ± 1.4</td>
<td>60.2 ± 2.4</td>
</tr>
<tr>
<td>Normalization</td>
<td>0.08</td>
<td>0.03</td>
</tr>
</tbody>
</table>

(statistical errors only)

- **Good mass resolution**
 - essential against rare B decays
 - $\sim 2\sigma$ separation to B_d

- **Impact of tracker misalignment on mass resolution**
 - 2 alignment scenarios
 - short-term $\sim 20\%$
 - long-term $\sim 10\%$

Christina Eggel
Study of $B_s^0 \rightarrow \mu^+\mu^-$ in CMS (2006/10/09, Flavor in the era of the LHC)
Results

- **Signal selection efficiency** $\varepsilon = 0.019 \pm 0.002_{stat}$
 where the efficiency $\varepsilon = \varepsilon_{cuts} \varepsilon_I \varepsilon_{\chi^2}$ is factorized
 - In 10 fb^{-1}: $N_S = 6.1 \pm 0.6$ signal events

- **Background rejection** $\eta = 2.6 \times 10^{-7}$
 - In 10 fb^{-1}: $N_B = 13.8^{+22.0}_{-13.8}$ background events
 (one remaining background event in $5 < m_{\mu\mu} < 6 \text{ GeV}$)

- **Extract upper limit with Bayesian procedure (CDF)**

 \[
 \mathcal{B}(B_s^0 \to \mu^+\mu^-) \leq \frac{N(n_{obs}, n_B, n_S)}{\varepsilon_{\text{gen}} \varepsilon_{\text{total}} N_{B_s}} \leq 1.4 \times 10^{-8} \text{ (90\% C.L.)}
 \]

 including statistical and systematic error
Systematics

- Systematics have minor impact compared to statistical error with current background MC sample
- Determination of efficiency with factorizing cuts
 - 15%
- Tracker misalignment (decay flight significance, χ^2, $\cos \alpha$)
 - 10% for signal efficiency, 50% for background
- L1 trigger efficiency
 - 10%
- Particle identification
 - muon ID and hadron mis-ID
- Tracking
 - efficiency: isolation veto
- Normalization
 - 15%, a la CDF and D0

Summary:

$\Delta(\varepsilon) : 24\%$

$\Delta(n_B) : 50\%$

$\Delta(N_{B_s}) : 15\%$
Background from rare b-hadron decays

- Study selected rare b-hadron decays
 - full simulation
 - average hadron muon fake rate $< 0.5\%$

- Background yields (misidentified dimuons)
 - for $\mathcal{L} = 10 \text{ fb}^{-1}$
 - no mass constraints
 - no analysis efficiency

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>N_{evt}</th>
<th>$N_{\mu\mu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_d \to K\pi$</td>
<td>2.5×10^6</td>
<td>61</td>
</tr>
<tr>
<td>$B_d \to \pi\pi$</td>
<td>7.3×10^5</td>
<td>18</td>
</tr>
<tr>
<td>$B_d \to \pi\mu\bar{\nu}$</td>
<td>4.5×10^6</td>
<td>22000</td>
</tr>
<tr>
<td>$B_s \to K\pi$</td>
<td>2.7×10^5</td>
<td>7</td>
</tr>
<tr>
<td>$B_s \to KK$</td>
<td>1.1×10^5</td>
<td>3</td>
</tr>
<tr>
<td>$B_s \to K\mu\bar{\nu}$</td>
<td>2.0×10^6</td>
<td>10000</td>
</tr>
<tr>
<td>$\Lambda_b \to p\pi$</td>
<td>4.2×10^4</td>
<td>1</td>
</tr>
<tr>
<td>$\Lambda_b \to pK$</td>
<td>8.4×10^4</td>
<td>2</td>
</tr>
<tr>
<td>$B^+ \to \mu^+\mu^-\mu^+\bar{\nu}$</td>
<td>1.4×10^5</td>
<td>13000</td>
</tr>
</tbody>
</table>
Rare b-hadron decays II

- Normalization to 10 fb^{-1}
 - Background: same analysis efficiency as for signal
Conclusions

- First CMS update on search for $B_s^0 \rightarrow \mu^+\mu^-$ since 1999
 - Full reconstruction with pileup for $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

- Expected upper limit in 10 fb^{-1}: $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) \leq 1.4 \times 10^{-8}$
 - study limited by size of background MC sample
 - good mass resolution

- Outlook
 - include rare B decays
 - full analysis: likelihood selection and normalization sample

(From hep-ph/0310042)