

LHCb sensitivity to the LFV $B_{d,s}^0 \rightarrow e^{\pm} \mu^{\mp}$ decays and interpretation in the context of the Pati-Salam SU(4)_C model

W. Bonivento and N.Serra
University and INFN of Cagliari - Italy

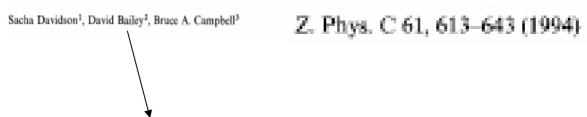
on behalf of the LHCb Collaboration

Leptoquarks

Leptoquarks (LQ) carry both baryon number (B) and lepton number (L)

Expected in some extensions of the SM:

- SO(10) grand unification
- extended technicolor models
- compositeness


Possible quantum numbers of LQ →assuming interaction with the ordinary SM fermions are dimensionless and invariant under the SM gauge group

Spin	3B + L	$SU(3)_c$	$\mathrm{SU}(2)_W$	$\mathrm{U}(1)_Y$	Allowed coupling
)	-2	3	1	1/3	$\bar{q}^c_L \ell_L$ or $\bar{u}^c_R e_R$
)	-2	$\bar{3}$	1	4/3	$ar{d}_R^c e_R$
)	-2	$\bar{3}$	3	1/3	$ar{q}^c_L \ell_L$
L	-2	$\bar{3}$	2	5/6	$\bar{q}^c_L \gamma^\mu e_R$ or $\bar{d}^c_R \gamma^\mu \ell_L$
L	-2	$\bar{3}$	2	-1/6	$\bar{u}_R^c \gamma^\mu \ell_L$
)	0	3	2	7/6	$\bar{q}_L e_R$ or $\bar{u}_R \ell_L$
)	0	3	2	1/6	$ar{d}_R\ell_L$
	0	3	1	2/3	$\bar{q}_L \gamma^\mu \ell_L$ or $\bar{d}_R \gamma^\mu e_R$
	0	3	1	5/3	$\bar{u}_R \gamma^\mu e_R$
	0	3	3	2/3	$\bar{q}_L \gamma^\mu \ell_L$

Pati-Salam

FCNC and LFV in B decays as a window on leptoquarks

Model independent constraints on leptoquarks from rare processes

Indirect searches: look for them e.g. in meson decays

LQ give rise to effective four fermion interactions

Best limits with SM suppressed decays: FCNC and LFV → leptoquark interactions remove the SM suppression

... with B decays

Beyond B→eµ which is discussed afterwards, interesting decays are:

a) FCNC, lepton flavor conserving

	90% U	.L.	S.M. expectation
B ⁰ _s →µ⁺µ⁻	1.7 ·10 ⁻⁷	CDF	(3.5±0.9)·10 ⁻⁹
B ⁰ _d →µ+µ-	2.3 ·10-8	CDF	(1.04±0.34)·10 ⁻¹⁰
B ⁰ _d →e⁺e⁻	6.1 ·10 ⁻⁸	BABAR	(2.34±0.33)·10 ⁻¹⁵
B ⁰ s→e+e-	5.4 ·10 ⁻⁵	CDF	
B ⁰ _d →T+T-	4.1 ·10 ⁻³	BABAR	~10-7

→allow to set model-independent limits on both SU(2) singlet and doublet LQ, both scalar and vector

b) lepton flavor violating

$$B_d^0 \rightarrow \mu\tau$$
 3.8 ·10-5 CLEO $B_d^0 \rightarrow e\tau$ 1.1·10-4 CLEO

	Decay mode	Significance of signal	Upper limit (10 ⁻⁶)
CLEO	B→Ke [±] μ [∓] K*e [±] μ [∓]	0.0σ 2.0σ	1.6
	πe [±] μ [∓]	0.0σ	1.6
	$ \rho e^{\pm} \mu^{\mp} B^{+} \rightarrow K^{-} e^{+} e^{+} $	0.0σ	3.2 1.0

+some other Bs decays (φ)

set limits also to SU(2) triplet LQ both scalar and vector (numbers to be worked out..., next conference!)

CERN 11/10/2006

Flavor Workshop - W. Bonivento - INFN Cagliari - ITALY

A specific model: the Pati-Salam SU(4)_c

J. Pati and A. Salam, Phys. Rev. D 10, 275 (1974).

A model incorporating quark-lepton symmetry as a local gauge symmetry.

Based on $SU(4)_c \otimes SU(2)_L \otimes G_R$ with particle content $\begin{bmatrix} u_G \\ u_R \\ d_B \end{bmatrix} \begin{pmatrix} d_G \\ d_R \\ d_B \\ d_B \end{pmatrix}$

Symmetry breaking $SU(4)_c \rightarrow SU(3)_c \otimes U(1)_{B-L}$ gauge bosons:

- 1 LQ with coupling $\alpha_s(M_{PS})$

Spin	3B + L	$SU(3)_c$	$\mathrm{SU}(2)_W$	$\mathrm{U}(1)_Y$	Allowed coupling
1	0	3	1	2/3	$\bar{q}_L \gamma^\mu \ell_L$ or $\bar{d}_R \gamma^\mu e_R$

- 3 massless gluons

[2] A. Kuznetsov and M. Mikheev, Phys. Lett. B 329, 295 (1994).

$$\nu_{\ell} = \mathcal{K}_{\ell i} \nu_{i}$$
, $u_{\ell} = \mathcal{U}_{\ell p} u_{p}$, $d_{\ell} = \mathcal{D}_{\ell n} d_{n}$. $\mathcal{K}_{\ell i}$, $\mathcal{U}_{\ell p}$, and $\mathcal{D}_{\ell n}$ are the unitary mixing matrices.

$$\nu_i = (\nu_1, \nu_2, \nu_3), \quad u_p = (u_1, u_2, u_3), = (u, c, t), \quad \nu_i, u_p, \text{ and } d_n \text{ are the mass eigenstates}$$

 $d_n = (d_1, d_2, d_3), = (d, s, b),$

The well-known Lagrangian of the interaction of the charged weak currents with the W bosons in our notations has the form

$$\mathcal{L}_{W} = \frac{g}{2\sqrt{2}}[(\bar{\nu}_{\ell}O_{\alpha}\ell) + (\bar{u}_{\ell}O_{\alpha}d_{\ell})]W_{\alpha}^{*} + h.c. =$$

$$= \frac{g}{2\sqrt{2}}[\mathcal{K}_{\ell i}^{*}(\bar{\nu}_{i}O_{\alpha}\ell) + \mathcal{U}_{\ell p}^{*} \mathcal{D}_{\ell n} (\bar{u}_{p}O_{\alpha}d_{n})]W_{\alpha}^{*} + h.c., \qquad (6)$$

where g is the $SU(2)_L$ group constant, and $O_\alpha = \gamma_\alpha(1 - \gamma_5)$. The standard Cabibbo-Kobayashi- Maskawa matrix is thus seen to be $V = U^+D$.

$$\mathcal{L}_{X} = \frac{g_{S}(M_{X})}{\sqrt{2}} \left[\mathcal{D}_{\ell n}(\bar{\ell}\gamma_{\alpha}d_{n}^{c}) + (\mathcal{K}^{+} \mathcal{U})_{ip}(\bar{\nu}_{i}\gamma_{\alpha}u_{p}^{c}) \right] X_{\alpha}^{c} + h.c. ,$$

CERN 11/10/2006

Flavor Workshop - W. Bonivento - INFN Cagliari - ITALY

only one LQ mass bound mixing independent:

$$Br(\pi^0 \to \nu \bar{\nu}) < 2.9 \cdot 10^{-13}$$
. (from cosmological arguments) $M_X > 18~TeV$. the other bounds contain explicitly mixing matrix elements: e.g.

FCNC B

$$Br(K_L^0 \to \mu^+ \mu^-) = (7.3 \pm 0.4) \cdot 10^{-9}$$
 [4] $\frac{M_X}{|Re(\mathcal{D}_{ud}\mathcal{D}_{us}^*)|^{1/2}} > 500 \div 600 \ TeV$

LFV

$$Br(K_L^0 \to \mu e) < 3.3 \cdot 10^{-11}$$
 [12] $\frac{M_X}{|\mathcal{D}_{ed}\mathcal{D}_{us}^* + \mathcal{D}_{es}\mathcal{D}_{ud}^*|^{1/2}} > 1200 \ TeV$

unfortunately only first and second family studied in the Kuznetsov et al., paper

The only paper studying the third family uses a slightly different approach:

(d,s,b)

6 possible combinations (we name them coupling schemes) (e,μ,τ) with diagonal couplings

Quark-lepton unification and rare meson decays

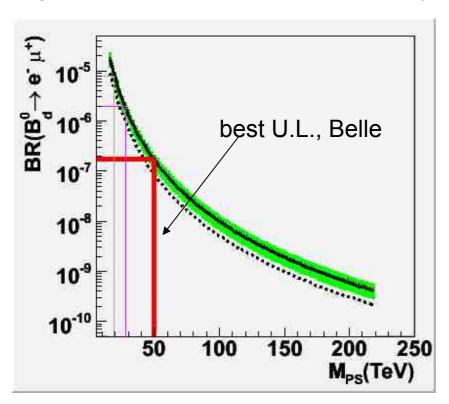
G. Valencia
Department of Physics, Iowa State University, Ames, Iowa 50011

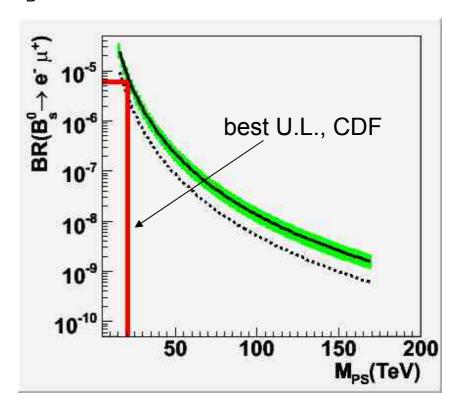
S. Willenbrock
Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801

$$BR(B_{d,s}^0 \to e^+\mu^-) = \Gamma(B_{d,s}^0 \to e^+\mu^-) \cdot \frac{2\pi \cdot \tau_{B(d,s)}}{h}$$

$$\Gamma(B_{d,s}^0 \to e^+\mu^-) = \pi \alpha_s^2(M_{PS}) \frac{F_{B(d,s)}^2 m_{B(d,s)}^3 R^2}{M_{PS}^4}$$

M_{PS} is the Pati-Salam leptoquark mass


$$R = \frac{m_{B(d,s)}}{m_b} \left(\frac{\alpha_s(M_{PS})}{\alpha_s(m_t)}\right)^{-4/7} \left(\frac{\alpha_s(m_t)}{\alpha_s(m_b)}\right)^{-12/23}$$


PHYSICAL REVIEW D

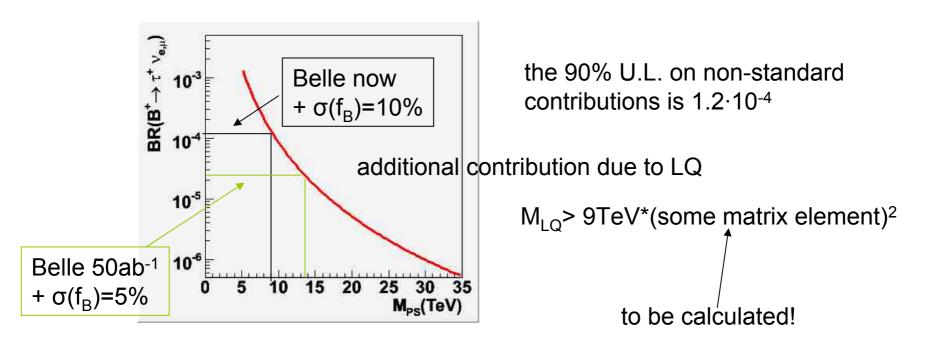
VOLUME 50, NUMBER 11

1 DECEMBER 1994

green band→theoretical error, mainly from F_B

The best limits on the M_{PS}

coupling schemes


	90% lower limits on M _{PS} in TeV								
c.s.		$K_L ightarrow \mu^{\pm} e^{\mp}$	$\frac{\pi^+ \rightarrow e^+ \nu}{\pi^+ \rightarrow \mu^+ \nu}$	$\frac{K^+ \rightarrow e^+ \nu}{K^+ \rightarrow \mu^+ \nu}$	$B_d^0 ightarrow e^\pm \mu^\mp$	$B_s^0 ightarrow e^\pm \mu^\mp$	$B^+ o e^+ u$	$B^+ o \mu^+ \nu$	
1	$e\mu\tau$	2278	250	4.9					
2	μετ	2278	76	130					
3	$e\tau\mu$		250		50			28	
4	$\mu \tau e$		76		50		19		
5	$\tau \mu e$			4.9		20.7	19		
6	τ e μ			130		20.7		28	
						1			

•B and K flavor conserving decays such as B→µµ forbidden without mixing

Online (workshop) monitoring at work!!!

Yesterday Belle (S.Villa) presented a measurement of BR($B^+ \rightarrow \tau^+ v$)= (1.8±0.65)10⁻⁴ to be compared with SM where BR= (1.6±0.4)10⁻⁴ It was mentioned the possibility of setting a limit to the Pati-Salam LQ mass. Here we are:

- 1) if we follow Valencia-Villenbrok then $K_1 \rightarrow e\mu$ gives a better limit
- 2) if we follow Kuznetsov →it gives acess to couplings different from any other channel

Other models for B > eµ

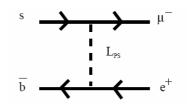
2 papers → higgs mediated SUSY seesaw models

Desdes et al., Phys.Lett.B 549(2002)159 J.K.Parry, hep-ph/0606150v2

1 paper → heavy neutrinos

Xiao-Gang-He et al, hep-ph/0409346 and G.Valencia private communication

they all predict BR<10⁻¹⁰ → well below LHCb sensitivity

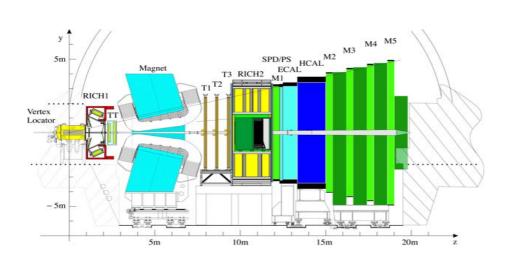

Event samples

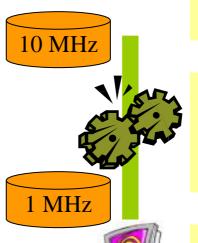
$ \begin{array}{c} \sigma_{b\bar{b}}(\mu b) \\ P(b\text{-hadron} \rightarrow \mu + X) \\ P(b\text{-hadron} \rightarrow e + X) \\ f(b \rightarrow B_d^0) \\ f(b \rightarrow B_s^0) \end{array} $	500 0.1059 0.1059 0.405 0.099	input quantities
$\frac{f(b \to \Lambda_b)}{\epsilon_{gen}(B_s^0 \to e^{\pm}\mu^{\mp})}$ $\epsilon_{gen}(b\overline{b} \to e^{\pm}\mu^{\mp})$	0.099 34 % 43 %	acceptance cut for signal and background at generation: at least one b-hadron in 400mrad

	# after acceptance cuts in 2 fb ⁻¹	# generated	equiv.£
B_d^0	$1.4 \cdot 10^{11}$		
B_s^0	$3.4 \cdot 10^{10}$		
$b\bar{b} \rightarrow e^- \mu^+$	4.9·10 ⁹	5.10€	2.05pb ⁻¹
$b\bar{b} \rightarrow \mu^- e^+$	4.9·10 ⁹	5.10€	2.05pb ⁻¹

problem: only limited sample full simulation of bb → e[±]µ[±] background PYTHIA+GEANT4

Suppose we want to study coupling scenario 4




 $B_0 \rightarrow e^+ \mu^-$ _and $B_0 \rightarrow e^- \mu^+$

CERN 11/10/2006

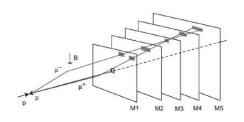
Flavor Workshop - W. Bonivento - INFN Cagliari - ITALY

Trigger for B→eµ events(i)

Visible collisions

 $L = 2 \cdot 10^{32} \, \text{cm}^{-2} \, \text{s}^{-1}$

L0: [hardware]
high Pt particles
calorimeter + muons
4 µs latency


On tape:

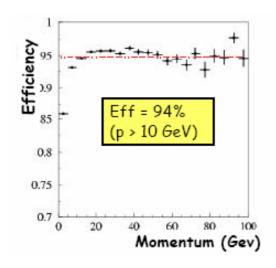
Exclusive selections
Inclusive streams

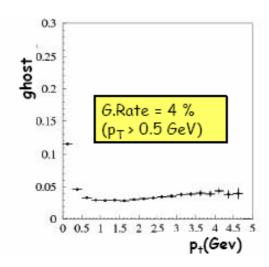
~1800 nodes farm

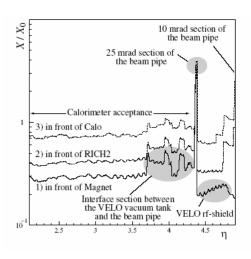
Trigger for B→eµ events (ii)

for $B_0 \rightarrow e^+\mu^-$, b->X it is the OR of e and μ L0 trigger

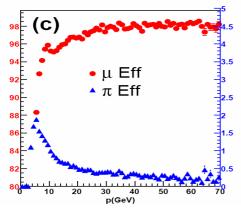
Туре	Thresh Pt(GeV)
Electron	2.8
Muon	1.1
Di-muon Σp _T ^μ	1.3

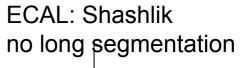

$$\varepsilon_{trg/Sel}(L0) = 0.95$$

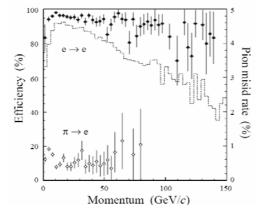

$$\varepsilon_{trg/Sel}(HLT) = 0.88$$


Tracking performance

High Track density Environment


- ~ 50 primary particles per event
- ~ 50% X_0 to up RICH2 \rightarrow e[±] bremsstrahlung


Particle ID (for B→eµ events)


μ-π discrimination

$$X(Y) \ Dist = \frac{X(Y)_{\text{extrapolation}} - X(Y)_{\text{hit}}}{X(Y)_{\text{padsize}}}$$

$$|Dist|^2 = \frac{\sum_{i}^{N} \left[(X \ Dist)_{i}^2 + (Y \ Dist)_{i}^2 \right]}{N}.$$

on M2-M5

<u>e-π discrimination</u>

based on the combination of:

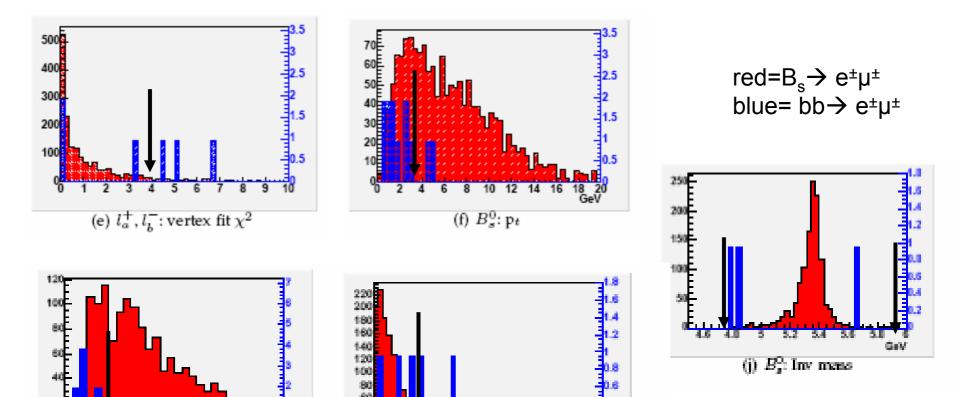
- -E (ECAL)/p
- -track- shower matching in ECAL
- -E(HCAL)
- -energy in the pre-shower
- -bremsstrahlung
- + combination with RICH and μ-det info

(more realistic figures under evaluation with an updated detector description)

Event selection

designed to cut away bb \rightarrow e[±] μ [±] (assuming to be the dominant one)

The selection cuts are similar to those of the old LHCb $B_s \rightarrow \mu^+\mu^-$

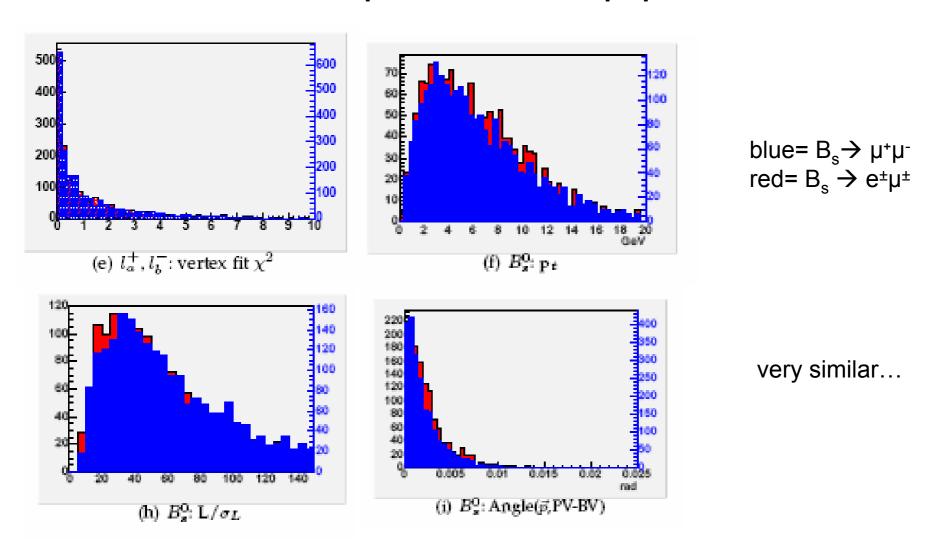

selection

particle	cut variable	units	selection
e	DLL		>0
μ	DLL		>-2
l_a^+, l_b^-	$min(IP/\sigma_{IP})$		>3.5
l_a^+, l_b^-	$\max(\text{IP}/\sigma_{IP})$		>5.5
l_a^+, l_b^-	$\min(p_t)$	GeV/c	>1.3
l_a^+, l_b^-	$max(p_t)$	GeV/c	>2.0
l_a^+, l_b^-	vertex fit χ^2		<4
B_s^0	p_t	GeV/c	>3
B_s^0	IP/σ_{IP}		< 3.15
B_s^0	L/σ_L		>29
B_s^0	$ \Delta M $	MeV/c ²	<600 (100)
B_s^0	Angle(\vec{p} ,PV-BV)	rad	0.005

a new event selection is under study, including separation of transverse-longitudinal variables and inclusion of the lepton isolation cut as done e.g. in ATLAS or LHCb $B_s \rightarrow \mu^+\mu^-$ (see contributions at this workshop)

CERN 11/10/2006

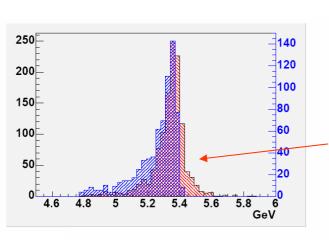
Event selection


all the <u>selection</u> cuts applied but the one shown in the figure (mass ±600MeV)

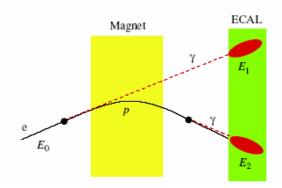
(i) B⁰_x: Angle(p,PV-BV)

CERN 11/10/2006

(h) B_s⁰: L/σ_L


Comparison with µ⁺µ⁻

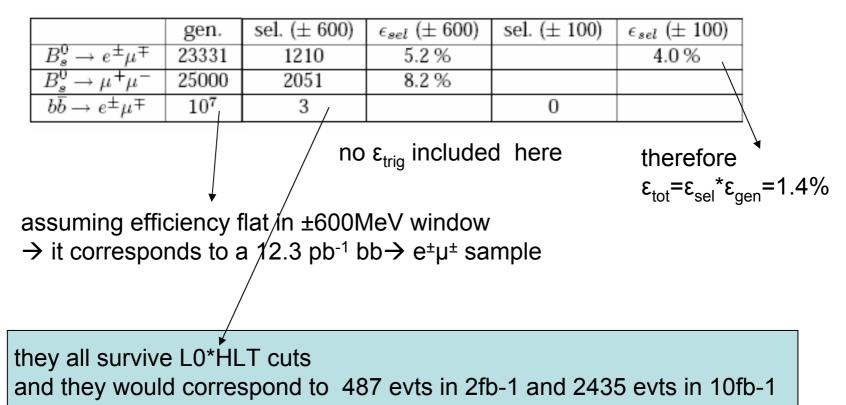
all the selection cuts applied but the one shown in the figure (mass ±600MeV)


CERN 11/10/2006 Flavor Workshop - W. Bonivento
INFN Cagliari - ITALY

Effect of the e[±] bremsstrahlung

track extrapolation from the vertex detector to the calorimeter and sum over photons with distance less than x

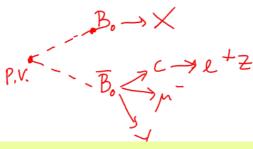
 \rightarrow core $\sigma(M)\sim50MeV$ after bremsstrahlung correction

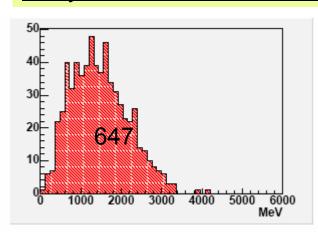

250 200 150 100 500 4.6 4.8 5 5.2 5.4 5.6 5.8 6 GeV (j) B_s^0 : Inv mass

Comparison with $\mu^+\mu^-$: $\sigma(M)\sim 18 MeV$

CERN 11/10/2006

Flavor Workshop - W. Bonivento - INFN Cagliari - ITALY

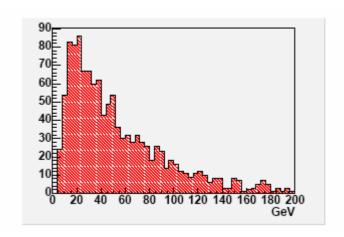

Selection figures


We calculate U.L. and discovery levels assuming S/B as of 9.8pb-1 and rescaling for more luminosity as \sqrt{L}

CERN 11/10/2006

Other backgrounds (i) chain decay of a b hadron

study done on a looser selection sample bb → e[±]µ[±] events



Invariant mass of e[±]µ[±] pairs from the decay of one b hadron in

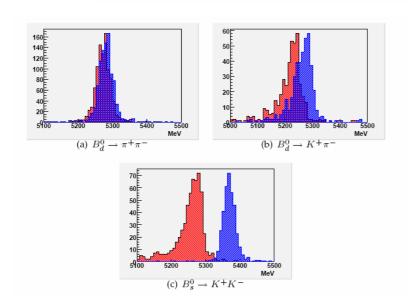
bb→ e[±]µ[±] events passing the preselection

1 ev with m(inv)>4GeV \rightarrow would trigger the preselection N(back)< 3.89*/4721 *(20)*N(bb \rightarrow e[±] μ [±])= 0.02* N(bb \rightarrow e[±] μ [±])

Other backgrounds (ii) misidentified hadrons

momentum spectrum of selected e[±] and µ[±] from B→eµ

misidentifications are obtained by weighting measured Pld performance with the p spectrum of selected particles


(stand-alone muon chambers!)

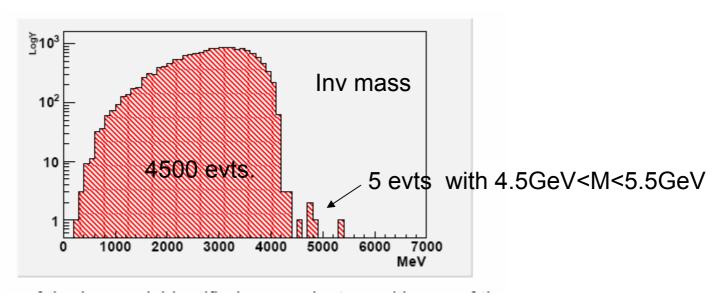
$$P(h \rightarrow e) = 0.5\%$$

$$P(h \rightarrow e) = 0.5\%$$
 $P(h \rightarrow \mu) = 0.35\%$

(a) from other B decays

		u	
decay type	BR	$effBR(B_d^0 \rightarrow e^+\mu^-)$	eff BR($B_s^0 \rightarrow e^+\mu^-$)
$B_d^0 \rightarrow \pi^+\pi^-$	$3.9 \cdot 10^{-6}$	$6.5 \cdot 10^{-11}$	$1.5 \cdot 10^{-10}$
$B_d^0 \rightarrow K^+\pi^-$	$2 \cdot 10^{-5}$	$2.7 \cdot 10^{-10}$	$7.2 \cdot 10^{-11}$
$B_s^0 \rightarrow K^+K^-$	$3.3 \cdot 10^{-5}$	$1.8 \cdot 10^{-11}$	$6.5 \cdot 10^{-11}$
$B_s^0 \rightarrow K^+\pi^-$	$4.8 \cdot 10^{-6}$	$1.2 \cdot 10^{-10}$	$2.2 \cdot 10^{-10}$
$\Lambda_b \rightarrow p\pi^-$	$2.1 \cdot 10^{-5}$	$1.5 \cdot 10^{-11}$	$1.3 \cdot 10^{-10}$
$\Lambda_b \rightarrow pK^-$	$7.8 \cdot 10^{-5}$	$5.7 \cdot 10^{-11}$	$5.1 \cdot 10^{-10}$
total		$5.5 \cdot 10^{-10}$	$1.5 \cdot 10^{-9}$

blue=with the right mass hypothesis red=assuming a e[±]µ[±] final state


(b) <u>one particle from the primary vertex + one b-hadron with a semileptonic decay</u> → under study…

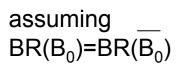
Other backgrounds (iii)

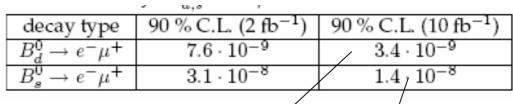
other b-hadron decays with one or more particles not reconstructed...

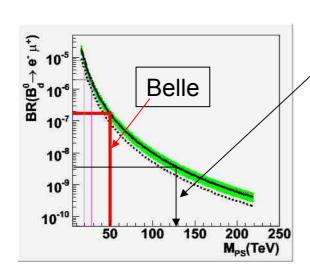
1) B⁺
$$\rightarrow$$
J/ ψ ($\rightarrow \mu^+\mu^-$)K⁺ BR~10⁻³*0.06

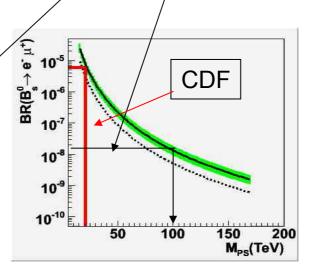
μ⁺ not reconstructed and K⁺ misidentified as e⁺

BR< $5/4500/10*10^{-3}*0.06*$ P(h \rightarrow e)*P(h \rightarrow µ)~ 10^{-12} (even without pointing cut) \rightarrow negligible; other backgrounds under study...


Results


The dominant background is from bb → e[±]µ[±]


$$BR(B_{d,s}^0 \to e^+\mu^-) \cdot N_{B(d,s)} + BR(\overline{B}_{d,s}^0 \to e^-\mu^+) \cdot N_{\overline{B}(d,s)} < \frac{\sigma_{N(back)}^{90C.L.}}{\epsilon_{tot} \cdot \epsilon_{L0} \cdot \epsilon_{HLT}}$$


 $N_{B(d,s)}$ =expected # of B(d,s) in 4π

(following T.Junk, Nucl.Instrum.Meth.A434, p. 435-443, 1999)

The best limits on the M_{PS}

90% lower limits on M_{PS} in TeV

c.s.		$K_L o \mu^{\pm} e^{\mp}$	$\frac{\pi^+ \rightarrow e^+ \nu}{\pi^+ \rightarrow \mu^+ \nu}$	$\frac{K^+ \rightarrow e^+ \nu}{K^+ \rightarrow \mu^+ \nu}$	$B_d^0 o e^\pm \mu^\mp$	$B_s^0 o e^\pm \mu^\mp$	$B^+ o e^+ u$	$B^+ o \mu^+ \nu$	
1	$e\mu\tau$	2278	250	4.9					
2	$\mu e \tau$	2278	76	130					
3	$e\tau\mu$		250		⁵⁰ 130			28	
4	$\mu \tau e$		76		50 130		19		
5	$\tau \mu e$			4.9	4	20.7	19 19		
6	$\tau e \mu$			130		20.7		28	
	LHCb limits								

Summary and outlook

Potential improvements under study:

- new improved event selection with separation transverse/longitudinal variables and inclusion of lepton and/or B candidate isolation variable
- other background B decay channels
- understand systematics from muon-electron id., photon conversions ecc.
- Likelihood and/or neural net based selection
- studies underway to solve ambiguity among couplings in case of discovery

We are looking at the potential contributions of B→et, B→μt, B→μeK* ecc to the Pati-Salam model

Work in progress..