

LHCb Upgrade Plans

Franz Muheim University of Edinburgh on behalf of the LHCb collaboration

Standard Model and New Physics Sensitivity LHCb Experiment Physics Programme the first 5 years Running LHCb at 10 times design luminosity Physics Reach with a 100 fb⁻¹ data sample CP violation in B_s decays Probe New Physics in hadronic and electroweak penguin decays CKM angle gamma LHCb Upgrade Detector and Trigger Plans LHCb Upgrade Detector Vertex detector studies Trigger and Read-out studies Conclusions

Flavour in the LHC era CERN Oct 9th 2006

Status of CKM Unitarity Triangles

• ICHEP2006 Status

- including CDF Δm_s measurement

• Tree diagrams

- Not sensitive to New Physics

- Probe New Physics
 - by comparing to SM predictions including loops
 - by measuring γ in loop diagrams
 - same for α , β and χ
- Standard Model is a very successful theory
- We are very likely beyond the era of « alternatives» to the CKM picture. NP would appear as «corrections» to the CKM picture Nir

Flavour in the LHC era CERN, 9 Oct 2006

F. Muheim

2

Probing New Physics in B_s Mesons

- NP appears as virtual particles in loop processes
- leading to observable deviations from SM expectations in flavour physics and CP violation (CPP)
- New Physics parameterisation in B_s Oscillations

$$\Delta m_q = \left| 1 + h_q e^{2i\sigma_q} \right| \Delta m_q^{SM}$$

 $B_s \to \phi \phi\,$ penguin decay

B_s-B_s oscillations

- If New Physics is found at LHC
 - Probe NP flavour structure with FCNC

 B_s^0

 $\overline{\mathrm{B}}_{\mathrm{s}}^{0}$

LHCb Sensitivities with 2 fb ⁻¹											
	Channel	Yield	B/S	Precision							
γ	$B_s \rightarrow D_s^{-+} K^{+-}$	5.4k	< 1.0	σ(γ) ~ 14°							
	$B_d \rightarrow \pi^+ \pi^-$	36k	0.46	-(.) 49	Alessio						
	$B_s \rightarrow K^+ K^-$	36k	< 0.06	σ(γ) ~ 4°	Sarti						
	$B_d \rightarrow D^0 (K\pi, KK) K^{*0}$	3.4 k, 0.5 k, 0.6 k	<0.3, <1.7, < 1.4	σ(γ) ~ 7° - 10°							
	$B^{-} \rightarrow D^{0} (K^{-} \pi^{+}, K^{+} \pi^{-}) K^{-}$	28k, 0.5k	0.6, 1.5	σ(γ) ~ 5° - 15°							
	$B^{-} \rightarrow D^{0} (K^{+}K^{-}, \pi^{+}\pi^{-}) K^{-}$	4.3 k	1.0	0(7) 0 - 10							
	$B^{-} \to D^{0} \left(K_{S} \pi^{+} \pi^{-}\right) K^{-}$	1.5 - 5k	< 0.7	σ(γ) ~ 8° - 16°							
α	$B_d \rightarrow \pi^+ \pi^- \pi^0$	14k	< 0.8	σ(α) ~ 10°							
	$B \to \rho^+ \rho^0, \rho^+ \rho^-, \rho^0 \rho^0$	9k, 2k, 1k	1, <5, < 4								
β	$B_d \rightarrow J/\psi(\mu\mu)K_S$	216k	0.8	σ(sin2β) ~ 0.022							
∆m _s	$B_s \rightarrow D_s^- \pi^+$	120k	0.4	σ(∆m _s) ~ 0.01 ps ⁻¹							
φ _s	$B_s \rightarrow J/\psi(\mu\mu)\phi$	131k	0.12	σ(φ _s) ~ 0.023	Frederic						
Rare decays	$B_s \rightarrow \mu^+ \mu^-$	17	< 5.7		Teubert						
	$B_{d} \to K^{*0} \mu^+ \mu^-$	4.4 k	< 2.6	$\sigma(C_7^{eff}/C_9^{eff}) \sim 0.13$	Ulrik						
	$B_d \to K^{\star 0} \gamma$	35k	< 0.7	σ(A _{CP}) ~0.01	Egede						
	$B_s \rightarrow \phi \gamma$	9.3 k	< 2.4								
charm	$D^{\star +} ightarrow D^0 (K^- \pi^+) \pi^+$	100 M			 Patrick Spradlin 						

LHCb – The First Five Years

- LHCb Operations
 - Luminosity tuneable by adjusting beam focus
 - Design is to run at $\mathcal{L} \sim 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ detectors up to $5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - little pile-up (n = 0.5)
 - less radiation damage
 - Luminosity will be achieved during 1st physics run
- LHCb Physics Goals
 - Run five (nominal) years at $\mathcal{L} \sim 2 \times 10^{32}$ cm⁻²s⁻¹ and collect 6 to 10 fb⁻¹
 - Exploit the B_s system
 - Observation of CP violation in B_s mesons
 - Precision measurements of B_s mass and lifetime difference
 - Reduce error on CKM angle γ by a factor 5
 - Probe New Physics in rare B meson decays with electroweak, radiative and hadronic penguin modes
 - First observation of very rare decay $B_s \rightarrow \mu^+ \mu^-$

Physics Case for LHCb at High Luminosity

What's next?

- Many LHCb results will be statistically limited
- New Physics effects are small -> require better precision measurements
- LHCb is only B-physics experiment approved for running after 2010
- Can LHCb exploit the full potential of B physics at hadron colliders?

• LHCb Luminosity

- Running at $\mathcal{L} \sim 2 \times 10^{32}$ cm⁻²s⁻¹ is a LHCb design choice
- LHC design luminosity is 50 times higher $\mathcal{L} \sim 10^{34}$ cm⁻²s⁻¹

• LHCb Upgrade Plans

- Upgrade LHCb detector such that it can operate at 10 times design luminosity of $\mathcal{L} \sim 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- Run ~5 yrs at \mathcal{L} ~ 2×10³³ cm⁻²s⁻¹
- Collect ~100 fb⁻¹ data sample
- Multiple interactions per beam crossing increases to n ~ 4
- Is compatible with possible LHC luminosity upgrade (SLHC)
- Does not require SLHC
- Could be implemented ~2013

ϕ_s from $B_s \rightarrow J/\psi \phi$

- CP Violation in B_s mesons
 - Interference in B_s mixing and decay
 - B_s weak mixing phase ϕ_s is very small in SM

 $\phi_s = -\arg(V_{ts}^2) = -2\chi \approx -2\lambda^2\eta \approx -0.035$

- \Rightarrow sensitive probe for New Physics e.g. stringent NMFV test
- NP parameterisation

 $\Delta m_q = \left| 1 + h_q e^{2i\sigma_q} \right| \Delta m_q^{SM}$

- Angular analysis to separate J/ψφ
 2 CP-even and 1 CP-odd amplitudes
- ϕ_s Sensitivity
 - at $\Delta m_s = 20 \text{ ps}^{-1}$
 - Expect 131k $B_s \rightarrow J/\psi \phi$ signal events per 2 fb⁻¹ (1 year)
 - Expected precision $\sigma(\sin \phi_s) \sim 0.023$
 - Small improvement in φ_{s} precision by adding pure CP modes

ϕ_{c} from $B_{c} \rightarrow J/\psi \phi$

- ϕ_s will be the ultimate SM test
 - For **LP** in B mesons
 - Similar to ε' in kaons for direct CP violation
- ϕ_s Sensitivity
 - LHCb for 10 fb⁻¹ (first 5 years)
 - ~3 σ SM evidence for $\phi_s \approx$ -0.035
 - ϕ_s precision statistically limited
 - Theoretically clean
- Historical Aside
 - **1988** NA31 measures ~3 σ from zero $\epsilon'/\epsilon = (3.3\pm1.1) 10^{-3}$
 - Community approves NA48 & KTEV
- LHCb Upgrade Sensitivities
 - Based on 100 fb⁻¹ data sample
 - Preliminary estimates by scaling with luminosity
 - Potential trigger efficiency improvements not included
- $|B_s \rightarrow J/\psi\phi$ Key channel for LHCb Upgrade
 - ϕ_s Sensitivity with 100 fb⁻¹ data sample
 - ~10 σ SM measurement with 100 fb⁻¹ $\sigma(\sin \phi_s) \sim 0.003$

 $\sigma(\sin \phi_s) \sim 0.010$

$b \rightarrow s$ Transitions in B_d Mesons

			≡ sin	(2¢	eff 1) HFAG ICHEP 2006 PRELIMINARY		• Con -
b→ccs	World Avera	age			0.68 ± 0.03		-
¢ V	BaBar	H	* <mark>9 8</mark>		$0.12 \pm 0.31 \pm 0.10$		
	Belle				$0.50 \pm 0.21 \pm 0.06$		
	Average				0.39±0.18		
٦ ۲	BaBar		1		$0.55 \pm 0.11 \pm 0.02$		
	Belle			-	$0.64 \pm 0.10 \pm 0.04$		- Nleï
	Average		*		0.59 ± 0.08		Naï
ks ks	BaBar		5	-	$0.66 \pm 0.26 \pm 0.08$		_
					$0.30 \pm 0.32 \pm 0.08$		
				L	0.51 ± 0.21		-
ы К S	BaBar		। <mark>उन्ह</mark> ेन		$0.33 \pm 0.26 \pm 0.04$		• The
	Belle				$0.33 \pm 0.35 \pm 0.08$		• Ine
	Average				0.33 ± 0.21		-
, Х		× ×			$0.17 \pm 0.52 \pm 0.26$		
്പ	Average		<u>★</u> <u></u>	.	0.17 ± 0.58		s
ုပ္ပ	BaBar		5	-	$0.62 {}^{+0.25}_{-0.30} \pm 0.02$		
ω K _s	Belle		* <u>- 1</u>		$0.11 \pm 0.46 \pm 0.07$		
	Average				0.48 ± 0.24		
^ο π ^ο Κ ^s f ₀ K ^o	BaBar		ত র	-	0.62 ± 0.23		
	Belle	H	÷ ★ <mark>{ }</mark> _		$0.18 \pm 0.23 \pm 0.11$		>
	Average				0.42 ± 0.17		le l
	Ba <mark>Bar </mark>				$-0.84 \pm 0.71 \pm 0.08$		
	Ave <mark>rage -</mark>	* 🗉			-0.84 ± 0.71		
к К К	BaBar Q2B				$41 \pm 0.18 \pm 0.07 \pm 0.11$		
	Belle			-	$0.68 \pm 0.15 \pm 0.03 \begin{array}{c} ^{+0.21}_{-0.13} \end{array}$		
+ 	Average		-*		$0.58 \pm 0.13 \substack{+0.12 \\ -0.09}$		
-2	2 -1		0	1	2	. [Muheim

Compare sin2 β measurements

- in $B_d \rightarrow \phi K_S$ with $B_d \rightarrow J/\psi K_S$
- Individually, each decay mode in reasonable agreement with SM
- But all measurements lower than $sin2\beta$ from

Naïve $b \rightarrow s$ penguin average

- $sin2\beta_{eff} = 0.52 \pm 0.05$
- 2.6 σ discrepancy from SM

• Theory models

- Predict to increase $sin2\beta_{eff}$ in SM

b \rightarrow s Transitions in B_s $\rightarrow \phi \phi$

- $B_s \rightarrow \phi \phi$ hadronic penguin decay
 - In SM weak mixing phase ϕ_s is identical in $B_s \rightarrow \phi \phi$ and $B_s \rightarrow J/\psi \phi$
 - Define $\Delta S(\phi\phi) = \sin\phi_s(\phi\phi) \sin\phi_s(J/\psi\phi)$
 - Measurement of ΔS(φφ) ≈ sinφ_s (φφ) ≠ 0
 is clear signal for New Physics (NMFV)
- ΔS(φφ) Sensitivity
 - Best $b \rightarrow s$ penguin mode for LHCb
 - Expect 1.2 k $B_s \rightarrow \phi \phi$ events per 2 fb⁻¹
 - Estimate sensitivity by scaling with $B_s {\rightarrow} J/\psi \varphi$
 - $\sigma(\Delta S(\phi \phi)) \sim 0.14$ in 10 fb⁻¹

• Key channel for LHCb Upgrade

- ΔS(φφ) precision statistically limited
- With 100 fb⁻¹ estimate precision $\sigma(\Delta S(\phi \phi)) \sim 0.04$ exciting NP probe
- Requires 1st level detached vertex trigger for hadronic decay Expect similar precision for $\Delta S(\phi K_S)$ in decay $B_d \rightarrow \phi K_S$

Flavour in the LHC era CERN, 9 Oct 2006

γ from B⁰ \rightarrow DK^{*0}, B[±] \rightarrow DK[±] & B_s⁰ \rightarrow D_s[∓]K[±]

- LHCb goals for measuring CKM angle γ
 - $B^0 \rightarrow D^0 K^{*0}$, $B^{\pm} \rightarrow D^0 K^{\pm}$ Two interfering tree processes in neutral or charged B decay
 - Use decays common to D⁰ and anti-D⁰ Cabbibo favoured self-conjugate D decays e.g. $D^0 \rightarrow K_S \pi \pi$, $K_S KK$, $KK \pi \pi$ Dalitz analysis Cabbibo favoured, single & doubly Cabbibo suppressed D decays e.g. $D^0 \rightarrow K\pi$, KK, $K\pi\pi\pi$ ADS (GLW) method
 - $B_s \rightarrow D_s^{\mp} K^{\pm}$ two tree decays (b \rightarrow c and b \rightarrow u) of $O(\lambda^3)$ Interference via B_s mixing
- γ Sensitivity
 - Expected precision for ADS and Dalitz $\sigma(\gamma) \sim 5^{\circ} 15^{\circ}$ in 2 fb⁻¹
- Motivation for LHCb Upgrade
 - Theoretical error in SM is very small < 1°
 - Large statistics helps to reduce systematic error to similar level
 - With 100 fb⁻¹ estimate precision
 - on $\sigma(\gamma) \sim 1^{\circ}$
 - Requires 1st level detached vertex trigger for hadronic decays

Asymmetry A_{FB} in $B_d \rightarrow K^{*0} \mu^+ \mu^-$

- Forward-backward asymmetry A_{FB}(s)
 - Asymmetry angle B flight direction wrt μ^+ direction in $\mu^+\mu^-$ rest-frame

- Sensitive probe of New Physics
 - Deviations from SM by SUSY, graviton exchanges, extra dimensions
 - $A_{FB}(s_0) = 0$ predicted at LO without hadronic uncertainties
 - Zero point s₀ and integral at high s sensitive to Wilson coefficients

- Expected Signal Yield
 - 4.4 k events per 2 fb⁻¹
 - Large statistics allows to measure additional transversity amplitudes
 - Sensitive to right-handed currents
- A_{FB} zero point sensitivity
 - $s_0 = 4.0 \pm 0.5 \text{ GeV}^2$ in 10 fb⁻¹

More Physics with 100 fb⁻¹

• What are key measurements?

- Selection of four discussed above
- Importance of different decays could change again with additional data from LHC, Tevatron and B-factories

• LHCb measurements

- Many more are statistics limited
- can be improved with LHCb Upgrade
- many of these are very sensitive to New Physics

• Additional LHCb Upgrade measurements

- Semileptonic charge asymmetry A_{SL}
- Very rare decays e.g. observation of $B_d \rightarrow \mu^+ \mu^-$ and precision measurement of $B_s \rightarrow \mu^+ \mu^-$
- Electroweak and radiative penguin decays e.g. $\Lambda_b{\rightarrow}\Lambda\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$
- Other hadronic penguin decays e.g. $B_d \rightarrow \phi K_S \ B_d \rightarrow \eta' K_S$
- <u>CP violation and mixing in charm meson decays</u>
- Lepton flavour violation in B, charm and tau decays e.g. $B^0 \rightarrow \mu^+ e^-$, $D^0 \rightarrow \mu^+ e^-$, $\tau^+ \rightarrow \mu^+ \gamma$, $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$

Comparison with Super-B factory

Flavour in the LHC era CERN, 9 Oct 2006

LHCb Upgrade Detector and Trigger

LHCb Performance vs Luminosity

- LHCb Luminosity
 - Running at $\mathcal{L} \sim 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ is default
 - Make use of learning experience in running LHCb
 - Will operate at luminosity up to $\mathcal{L} \sim 5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

• LHCb Detectors

- Detectors able to cope with $\mathcal{L} \sim 5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- Vertex detector sensors require replacing after 6 8 fb⁻¹ (~3 years)
- Default replacement same geometry, similar slightly improved sensors

• Level-0 Trigger - L0

- High p_T μ , $\mu\mu$, e, γ , hadron + pileup
- Read-out at 40 MHz 4 µs latency
- Existing Front-End electronics limits LO Trigger output to 1.1 MHz

LHCb L0 Trigger

Flavour in the LHC era CERN, 9 Oct 2006

LHCb Upgrade Plans

• The Big Question

- How do we upgrade LHCb detector such that it can operate at 10 times design luminosity of $\mathcal{L} \sim 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$?
- Physics, Detector and Trigger studies have started
- Several approaches under investigation

Vertex Detector

- VELO sensors require replacing with radiation-hard sensors

• LO Detached Vertex Trigger

- Add Vertex Detector (VELO) and Trigger Tracker (TT) to LO Trigger
- Requires 40 MHz readout of VELO and TT
- Implementation in FPGAs
- Is Magnetic field in VELO region required?

• Other LHCb Detectors

- need upgrade due to occupancy and/or irradiation
- Replace inner most region of RICH photo detectors
- Replace inner most region of ECAL with crystal calorimeter
- Possibly add other sub-detectors to 40 MHz readout

LHCb Upgrade Plans II

• Readout full detector at 40 MHz

- Requires new readout architecture
- All trigger decisions in CPU farm
- All Front-end electronics must be redesigned
- Increased radiation hardness required
- Electronics R&D can profit from common LHC development

• Detectors for 40 MHz Readout

- VELO sensors require replacing with radiation-hard sensors
- Silicon tracker sensors (TT and IT) need to be replaced
- Outer tracker occupancy likely prohibitive Increase (decrease) area of Inner/Outer Tracker
- RICH photo detectors need to be replaced

• Additional Considerations

- for running LHCb at $\mathcal{L} \sim 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- Costs expected to compare favourably with existing infrastructure and complementary approaches

Vertex Detector Upgrade

• Critical for LHCb upgrade physics programme

Radiation Hard Vertex Detector with Displaced Vertex Trigger

Radiation Hard Vertex Detector

- Vertex Detector for LHCb Upgrade
 - requires high radiation tolerance device
 >10¹⁵ 1 MeV neutron_{eq} /cm²
- Geometry Strixels / Pixels
 - remove RF foil
 3% X₀ before 1st measurement
 - move closer to beam from $8 \rightarrow 5 \text{mm}$

Flavour in the LHC era CERN, 9 Oct 2006 F. Muheim

Method

- Combine LO with detached vertex trigger LO - hadron $E_T > 3 \text{ GeV}$ track with largest $p_T > 2 \text{ GeV}$ impact parameter |IP| > 50 um

LHCb Upgrade Trigger Studies

- Run L1 trigger algorithm at L0
- Preliminary results
 - $B_s \rightarrow D_s^{\pm} K^{\pm}$ at L = 6 x 10³²
 - For LO+vxt Min. bias efficiency does not depend strongly on # of interactions n_r
 - LO hadron rate: r = 0.8 MHz $B_s \rightarrow D_s^{\mp} K^{\pm}$ efficiency $\varepsilon = 66\%$
 - Better efficiency than LO trigger at L = 2×10^{32} (baseline) r = 0.7 MHz
 - Yield $B_s \rightarrow D_s^{\mp} K^{\pm}$ is 5 times baseline
 - Yield scales linearly with luminosity

Flavour in the LHC era **CERN, 9 Oct 2006**

20

Conclusions

- Standard Model is very successful
 - Require precision measurements to probe/establish flavour structure of New Physics

• Many LHCb results will be statistically limited

- LHCb plans to run initially for five years at $\mathcal{L} \sim 2 ... 5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- 6 10 fb⁻¹ data set will not reach full potential of B physics at hadron colliders

• LHCb Upgrade Plans

- Replace VELO with radiation hard vertex detector
- Add first level detached vertex trigger to LHCb experiment to trigger efficiently on hadronic modes at high luminosities
- Readout of all LHCb detectors at 40 MHz
- Requires new front-end electronics, silicon sensors,. RICH photo detectors
- Run five years at $\mathcal{L} \sim 2 \times 10^{33}$ cm⁻²s⁻¹ and collect 100 fb⁻¹ data sample

• LHCb Physics reach with 100 fb⁻¹

- Perform ~10 σ measurement of SM weak B_s mixing phase ϕ_s = -0.035 in B_s \rightarrow J/ $\psi\phi$
- Probe or establish New Physics by measuring ϕ_s in hadronic penguin decay $B_s \rightarrow \phi \phi$ with a precision of $\sigma(\Delta S(\phi \phi)) = 0.040$
- Measure CKM angle γ to a precision of $\sigma(\gamma) \sim 1^\circ$
- Probe New Physics in rare B meson decays Measure Wilson coefficient C_7/C_9 to 4% in electroweak decay $B \rightarrow K^{*0}\mu^+\mu^-$
- Measure B_d→μ⁺μ⁻

