d-D quark mixing angle in the E_{6} model

Gökhan Ünel / UC Irvine \& CERN
in collaboration with
S.Sultansoy \& M.Yilmaz / Ankara

II October 2006
Flavour at the LHC workshop

Recall the model

$$
\binom{u_{L}}{d_{L}}, u_{R}, d_{R}, D_{L}, D_{R}\binom{c_{L}}{s_{L}}, c_{R}, s_{R}, S_{L}, S_{R}\binom{t_{L}}{b_{L}}, t_{R}, b_{R}, B_{L}, B_{R}
$$

D, S, B : New iso-singlet quarks $(Q=-1 / 3)$

$$
\begin{align*}
\mathrm{L}_{\mathcal{D}} & =\frac{\sqrt{4 \pi \alpha_{e m}}}{2 \sqrt{2} \sin \theta_{W}}\left[\bar{u}^{\theta} \gamma_{\alpha}\left(1-\gamma_{5}\right) d \cos \phi+\bar{u}^{\theta} \gamma_{\alpha}\left(1-\gamma_{5}\right) D \sin \phi\right] W^{\alpha} \tag{1}\\
& -\frac{\sqrt{4 \pi \alpha_{e m}}}{4 \sin \theta_{W}}\left[\frac{\sin \phi \cos \phi}{\cos \theta_{W}} \bar{d} \gamma_{\alpha}\left(1-\gamma_{5}\right) D\right] Z^{\alpha} \\
& -\frac{\sqrt{4 \pi \alpha_{e m}}}{12 \cos \theta_{W} \sin \theta_{W}}\left[\bar{D} \gamma_{\alpha}\left(4 \sin ^{2} \theta_{W}-3 \sin ^{2} \phi\left(1-\gamma_{5}\right)\right) D+\bar{d} \gamma_{\alpha}\left(4 \sin ^{2} \theta_{W}-3 \cos ^{2} \phi\left(1-\gamma_{5}\right)\right) d\right] Z^{\alpha}+\text { h.c. } .
\end{align*}
$$

θ : CKM mixing angle
The measured values of CKM elements \& unitarity $\phi: d-D$ mixing angle of the 3×4 CKM rows constrains $\phi: \sin \phi<0.07$.

Assumptions:

I. In-family mixing bigger than between family mixing
2. D quark is the lightest, like SM: most accessible in LHC
3. E_{6} gauge bosons heavy \& don't interact w/ SM bosons

Mixing angle with SM quark

-d-D mixing angle can only be extracted from the single production of D quark since the cross section depends linearly on $(\sin \Phi)^{2}$

- Cross section for $\mathrm{Pp} \rightarrow \mathrm{D}+$ jet as a function of m_{D} and for various values of the mixing angle (0.015 ... 0.065)

\Rightarrow D quark + jet production and $\mathrm{m}_{\mathrm{D}}(\mathrm{GeV})$

Single D quark production

- Decays involving Z would be easiest to reconstruct:

diagr. 1

diagr. 2

diagr. 6
diagr. 7

diagr. 4

diagr. 8
$\Rightarrow \mathrm{m}_{\mathrm{D}}=400$... 2000 GeV cases are considered using generator level MC (CompHEP) with $2 \mathrm{j}+\mathrm{Z}$ as the signal $(\sin \Phi=0.045)$
- All SM processes yielding $2 j+Z$ are also considered as background events where j can be any light jet.

Event selection

-Trigger and detector driven common cuts for all mD values:

$$
\begin{aligned}
P_{T p} & >15 \mathrm{GeV} \\
\left|\eta_{p}\right| & <3.2 \\
\left|\eta_{Z}\right| & <3.2 \\
R_{p} & >0.4 \\
M_{Z p} & =M_{D} \pm 20 \mathrm{GeV}
\end{aligned}
$$

$\sqrt{ }$ Signal \& Bg can be separated using the PT of the most energetic jet:

Further details

-Cut values were optimized by maximizing the signal significance, $\sigma=S / \sqrt{B}$

$P_{\text {T jet }}(\mathbf{G e V})$

$M_{D}(\mathrm{GeV})$	400	800	1200	1500	2000
$\Gamma(\mathrm{GeV})$	0.064	0.51	1.73	3.40	8.03
Signal (fb)	100.3	29.86	10.08	5.09	1.92
Background (fb)	2020	144	18.88	6.68	1.36
optimal P_{T} cut	100	250	450	550	750

$M_{D}(\mathrm{GeV})$	400	800	1200	1500	2000
Signal Events	702	209	71	36	13.5
Background Events	14000	1008	132	47	9.5
Signal significance	5.9	6.6	6.1	5.2	4.37

Mixing angle reach

3σ signal / exclusion curves

- cross section at a given m_{D} depends linearly on $(\sin \Phi)^{2}$
-the signal significances obtained at the example $\sin \Phi=0.045$ can be converted to 3σ exclusion plots for angular reach at fixed mass values

Mixing angle reach

3 σ signal / exclusion curves

- cross section at a given m_{D} depends linearly on $(\sin \Phi)^{2}$
- the signal significances obtained at the example $\sin \Phi=0.045$ can be converted to 3σ exclusion plots for angular reach at fixed mass values

BUT: gluon jets

Outlook

-Fix the BG problem, re-optimize, recalculate

- We can use the jet associated production of the D quark to make a measurement on its mixing angle to the SM quarks.
- If there is no signal observation a limit curve on the $\sin \Phi$ vs mo plane can be imposed.
- If the mixing angle is not so small, the single production might become more efficient than the double production for the discovery as well.

