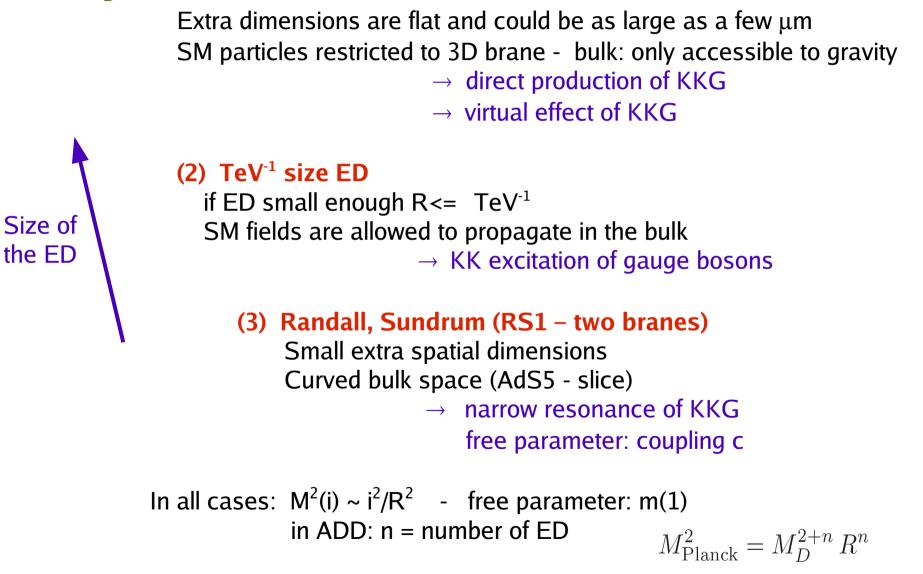


CMS discovery potential for Z'/ED and spin discrimination

Barbara Clerbaux ULB, Brussels



Models considered

If $\sqrt{s} < M_D$: (1) Large flat Extra Dimension (ADD)

If $\sqrt{s} > M_D$: TransPlanckian physics

Additional heavy neutral gauge boson are predicted in many models BSM: superstring-inspired and GUT theories - L-R models - little Higgs No reliable prediction on the Z' mass scale (free paramete)

Consider 6 Z' models, representative of a broad class of models:

- Sequential Standard Model (SSM): same coupling as SM Z
- $Z(\psi)$, $Z(\eta)$ and $Z(\chi)$, arising from E6 and SO(10) GUT groups differ from couplings to quark and leptons
- Z_LRM and ZALRM, arising from the framework of the so-called "left-right" and "alternative left-right" models.

Current limits on Z' mass: from 600-900 GeV depending on models **Tevatron:** expected to cover up to masses ~1 TeV

CMS searches in the following topologies:

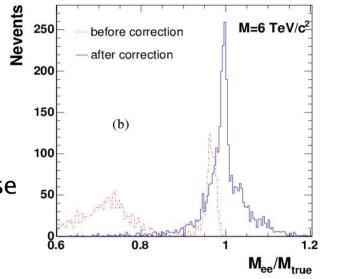
Di-electron, di-photon, di-muon and di-jets resonance states (new particles) in GUT models (Z'), RS1-model (G) and TeV⁻¹ extra dimension model (KKZ)

(how to distinguish between models)

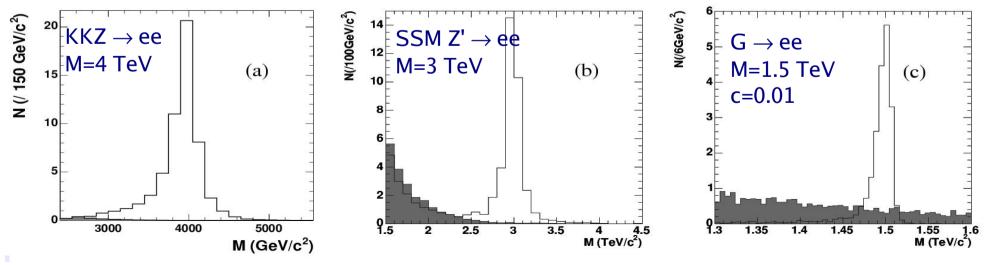
Single Leptons + missing ET in R-L models (W' production)

Di-muon continuum modifications (virtual graviton production in ADD)

Single Photons + Missing ET (direct graviton production in ADD)


B. Clerbaux et al. CMS NOTE 2006/083

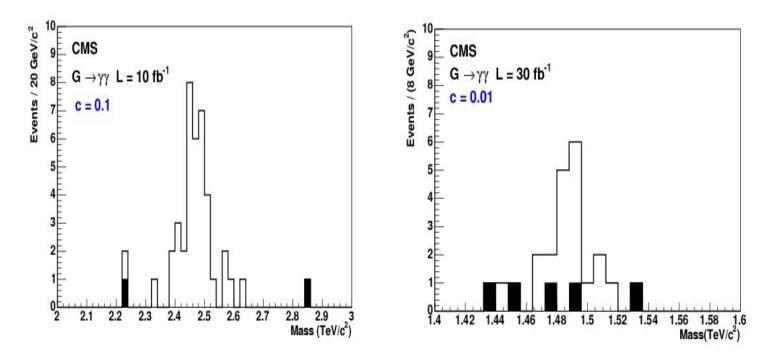
$pp \rightarrow HR \rightarrow ee$


Heavy Resonance: from TeV⁻¹ ED (KKZ), GUT (Z') and RS(G)

Dominant and irreducible bg: DY: $pp \rightarrow \gamma/Z \rightarrow ee$ others: ZZ,ZW,WW, tt: few % of DY bg

Selection: 2 electrons: Et>100 GeV in ECAL + track, + FSR recovery, H/E, isolation Reconstruction: saturation of ECAL readout electronic because of limited dynamical range of the Multi-Gain- Pre-Amplifier: if E1>1.7 TeV (in barrel) and 3.0 TeV in Endcap

Mass resolution: ~0.6 % for non saturated events and ~7% for saturated events


M.-C. Lemaire et al. CMS NOTE 2006/051

 $pp \to G \to \gamma \gamma$

Important channel: Identify a graviton: $G\!\to\gamma\gamma$, distinguish to Z'

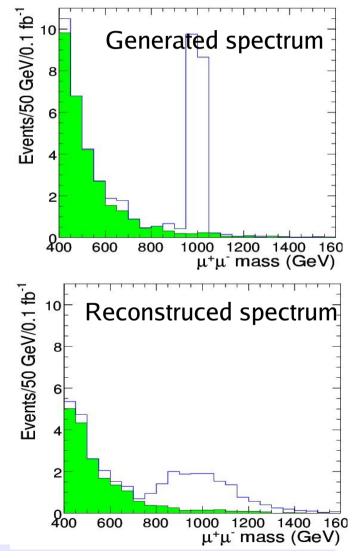
Main bg: prompt diphoton (irreducible) (γ+ jets, QCD jets, DY(ee))

Selection: 2 electrons Et>150 GeV in ECAL, H/E, isolated in ECAL/tracker Reconstruction: saturation correction

R. Cousins et al. CMS NOTE 2005/002 CMS NOTE 2006/062

$pp \rightarrow HR \rightarrow \mu \mu$ Heavy Z from GUT (Z') and RS(G)

Dominant and irreducible bg: DY: pp $\rightarrow \gamma/Z \rightarrow \mu\mu$ others: ZZ,ZW,WW tt: few % of DY bg


Selection:

- muon acceptenace |eta| <2.4
- at least 2 muons of opposite charge + FSR recovery
- overall acceptance ~75-85 %

Reconstruction: misalignment of tracker + muon system: "first data" (0.1 fb⁻¹) and "long term" (1 fb⁻¹) scenarios

Mass resolution: 4.2 (1TeV) to 9% (5TeV) - long term 12.5% (1 TeV) first data

Example: mass spectrum for 1TeV Z'(η) signal and DY bg (L=0.1 fb⁻¹, and using "first data" misalignment).

Significance

Significance:

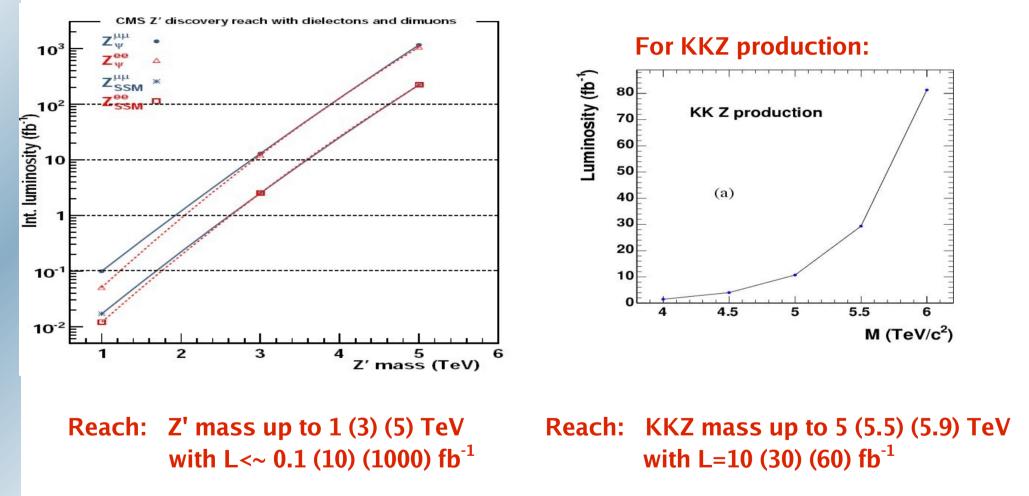
- for ee and $\gamma\gamma$: S = $\sqrt{2 (Ns+Nb) \ln(1+Ns/Nb)-Ns)}$
- for $\mu\mu$: signal observability: used an unbinned maximum likelihood fit to $\mu\mu$ spectrum over range peak+bg tail.

S= $\sqrt{(2\ln (L(s+b)/L(b)))}$

L(s+b) is the maximum likelihood value obtained in the full (signal + bg) fit

Discovery limit is defined S>5

Cross section: use pythia LO K factor (for NNLO QCD correction) - K = 1.3 for signal and bg

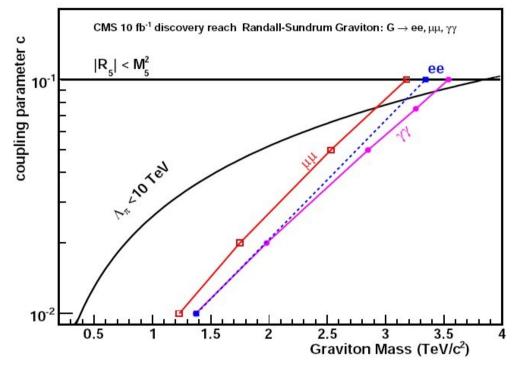


Discovery limits

CMS PTDR(volII) CERN/LHCC 2006-021

For Z' production:

 $\mu\mu$: low Land low mass: suffers from misalignment effects (recover for L>10 fb⁻¹) ee: high mass: suffers from ECAL electronic saturation, degrade the mass resolution



Discovery limits

CMS PTDR(volII) CERN/LHCC 2006-021

For G production:

Reach: Most of the interesting plane in (M, c) for L<10 fb⁻¹

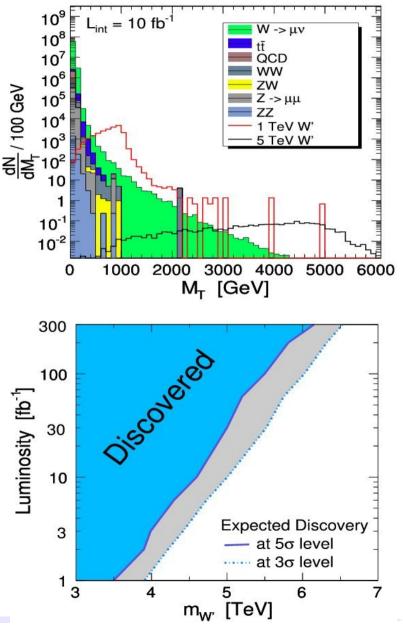
- BR for $G \to \, \gamma \, \gamma \, \text{is}$ ~twice the one for ee or $\mu \mu$

- Low c and mass: $\gamma\,\gamma$ channel suffers from QCD and prompt photon bg

C. Hof et al. CMS NOTE 2006/117

$W' \to \mu \nu$

Search for heavy W' : L-R models , composite models, little Higgs model


Use "reference model": generic W' (same coupling as W, except opening tbbar for M(W')>180 GeV))

Topology: μ + missing Et bg:W \rightarrow μ v, Z \rightarrow μ μ , WW incl., ZZ incl., ZW incl., tt.

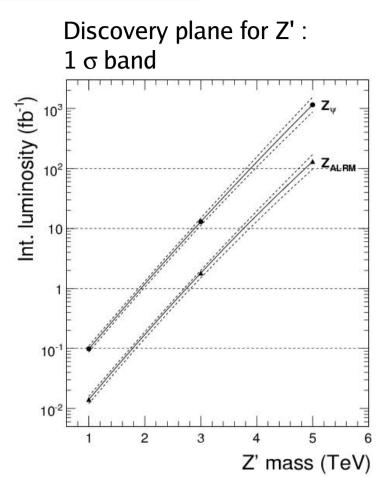
Selection: single muon (good quality fit) + isolation

Transverse mass: $M_T = \sqrt{(2pt(\mu) Et(miss) (1-cos \Delta \Phi))}$ Peak is spread at large M_T due to detector resolution

CLs method applied, based on likelihood ratio, calculated for all bins of the M_T distribution. Expected discovery: M(W')<5TeV for L=10 fb⁻¹

CERN - 11/10/2006

11


12

QCD and EW high-order corrections (K factors)

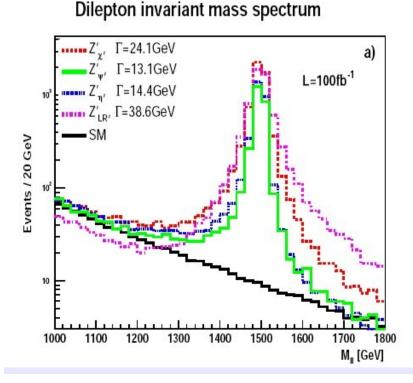
Parton Distribution Functions (PDF)

Hard process scale (Q2)

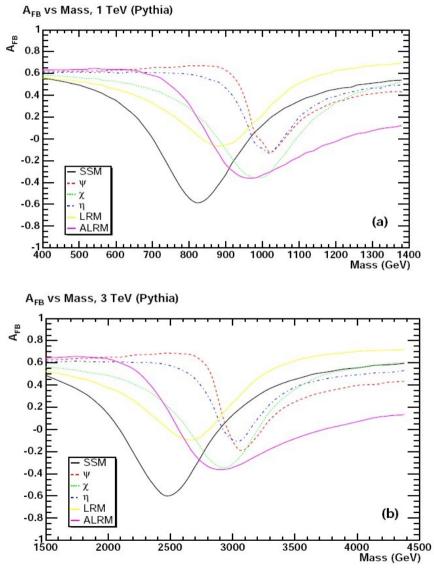
Cut efficiency, significance estimators..

systematics on signal W' production cross section:

Systematic Uncertainties								
Туре	1 TeV W'	2 TeV W'	3 TeV W'	4 TeV W'	5 TeV W'			
PDF $\Delta\sigma/\sigma$	$^{+3.6}_{-4.3}$	+6.8 -5.9	$+6.2 \\ -8.3$	$^{+17.1}_{-10.6}$	+33.7 -18.9			
Hard Scale $\Delta\sigma/\sigma$	$^{+4.1}_{-4.1}$	$+7.5 \\ -6.9$	$^{+10.4}_{-9.2}$	$^{+13.1}_{-10.3}$	$^{+14.8}_{-12.7}$			
Luminosity $\Delta \mathcal{L}/\mathcal{L}$	$\pm 5\%$	$\pm 5\%$	$\pm 5\%$	$\pm 5\%$	$\pm 5\%$			



Distinguishing among Z' models



If new Z' resonance is discovered characterisation of its coupling using:

- production and decay distributions
- measurement of forward-backward asymmetries of leptonic decay product at the resonance peak and off-peak
- -> info on parity violating couplings (can distinguish between Z' models)

R. Cousins et al. CMS NOTE 2005/022

- The forward-backward asymmetry: $A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$ $\sigma_F \equiv \int_0^1 \frac{d\sigma(q\overline{q} \to \mu^+ \mu^-)}{d\cos\theta^*} d\cos\theta^*$

 $\theta*:$ angle between quark direction and $\mu-$ in $\ \mu-\mu+$ CM

$$\sigma_B \equiv \int_{-1}^0 \frac{d\sigma(q\overline{q} \to \mu^+ \mu^-)}{d\cos\theta^*} d\cos\theta^*$$

For spin 1 (γ /Z/Z') propagators:

$$P(\cos \theta^*; A_{\rm FB}, b) = \frac{3}{2(3+b)}(1+b\cos^2 \theta^*) + A_{\rm FB}\cos \theta^*$$

 A_{FB} : depends on left- and right- handed couplings of $\gamma/Z/Z'$ to u and d quarks and charged leptons.

- Uncertainty in the sign of $cos\theta *$ in pp collision:

quark direction is ambiguous experimentally since the quark can come from either p assume: longitudinal motion of the dimuon system gives the quark direction \rightarrow exist "mistagging probability" - high at low y value - low at high y value \rightarrow dilute the A_{FB} if not corrected for Use the Collins-Soper reference frame (pt effect) To correct for mistag: y cut, A_{FB} in y bin or mistagging probability on an event by event basis (using all event)

Distinguishing among Z' models

(c)

Define a mistagging probability function: W(y, M) unbinned likelihood fit on $P(\cos\theta*)$ after mistag correction

- \rightarrow nominal uncertainty on A_{FR}
- = 0.09 in a fit of 400 events for 1 TeV Z' 0.08 400 3

Significance level (in term of sigma's) for pairwise comparisons of Z' models:

Model	$\mathbf{Z}_{\mathrm{ALRM}}$	Z_{χ}	Z_η	Z_ψ	$\rm Z_{SSM}$	$\mathrm{Z}_{\mathrm{LRM}}$
$\mathbf{Z}_{\mathrm{ALRM}}$	8 —	0.0	5.3	6.6	7.6	9.4
Z_{χ}	0.0	_	3.7	4.6	5.3	6.6
Z_{η}	2.7	2.6	-	0.7	1.2	2.1
Z_ψ	3.3	3.3	0.7	_3	0.5	1.4
$\mathbf{Z}_{\mathrm{SSM}}$	6.8	6.8	2.1	0.9	—	1.6
Z_{LRM}	6.8	6.8	3.0	2.1	1.3	-

at M=1 TeV, L=10 fb⁻¹

0.2

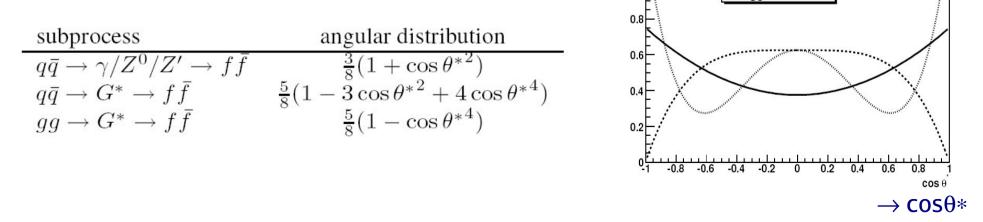
0.1

Model	Z _{ALRM}	Z_χ	Z_η	Z_ψ	$Z_{\rm SSM}$	Z_{LRM}]
$\mathbf{Z}_{\mathrm{ALRM}}$		0.3	2.5	3.0	3.2	4.2]
Z_{χ}	0.2	1	1.4	1.7	1.8	2.4	
Z_η	1.2	1.0		0.3	0.4	0.8]at M=3 7
Z_ψ	1.4	1.3	0.3	1	0.1	0.5	
$\rm Z_{SSM}$	2.7	2.5	0.6	0.2	-	0.8	
Z_{LRM}	2.8	2.6	1.1	0.8	0.6	_	

at M=3 TeV, L=400 fb⁻¹

I. Belotelov et al. CMS NOTE 2005/104

---- qq -> Z' -> ff ---- qq -> G* -> ff ----- qq -> G* -> ff

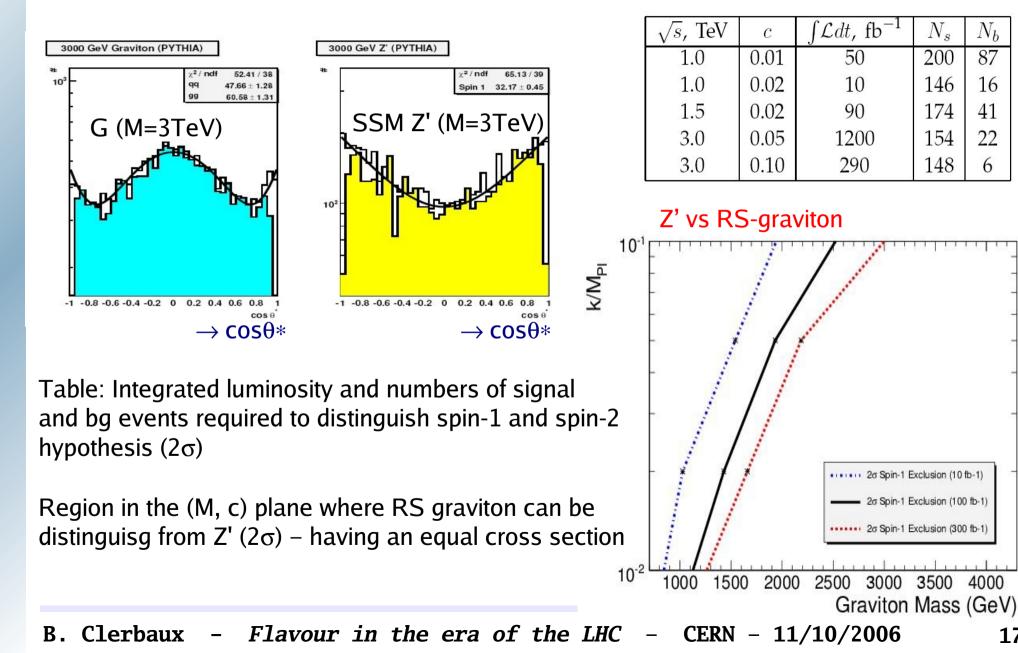

If new resonance is discovered

Characterisation of its spin and coupling using:

- Production and decay probabilities and distributions: for example $G{\rightarrow}\gamma\gamma$
- Angular distribution of the decay product : useful for spin discrimination

Spin-1 States: Z from extended gauge models, ZKK Spin-2 States: RS1-graviton

Method: unbinned likelihood ratio statistics incorporating the angles in of the decay products the Collins-Soper frame consider only the even term in $\cos\theta*$ (sign of $\cos\theta*$ is random)

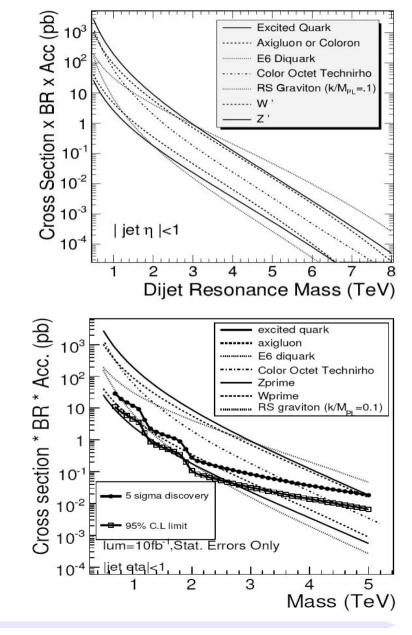


Spin discrimination

6

The statistical technique has been applied to fully simu/reco events:

High mass dijets


K. Gumus et al. CMS NOTE 2006/070

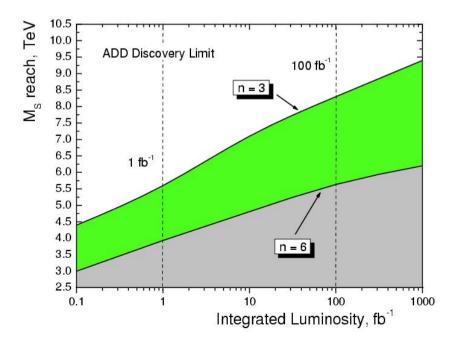
Search for dijet resonance (pp $\rightarrow X \rightarrow jet+jet$)

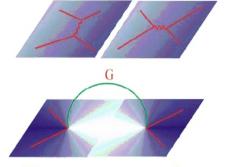
Sensitivity to observing narrow resonance signal on a high QCD bg - Challenging channel: large QCD bg and often limited dijet mass resolution Goal: as generic an analysis as possible Give the CMS cross section sensibility for 95% CL and 5 σ discovery

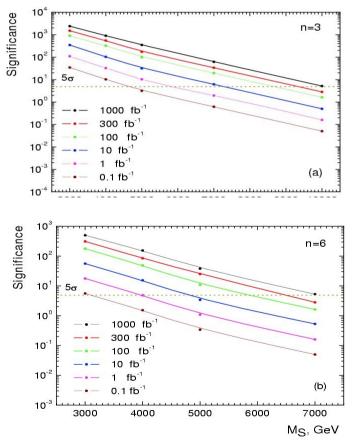
Compare to 8 benchmark models: First five: produced via strong interactions last three:electro-weak coupling – lower cross-section no 5σ discovery potential but exclusion at 95%CL |η|(jet)<1

Resonance Model	95% CL E	xcluded M	lass (${ m TeV}/c^2$)	5σ Discovered Mass (TeV/ c^2)			
	$100 {\rm pb^{-1}}$	$1 {\rm fb}^{-1}$	$10 {\rm fb}^{-1}$	$100 {\rm pb^{-1}}$	$1 {\rm fb}^{-1}$	$10 {\rm fb}^{-1}$	
Excited Quark	0.7 - 3.8	0.7 - 4.8	0.7 - 5.8	0.7 - 2.9	0.7 - 3.9	0.7 - 5.0	
Axigluon or Coloron	0.7 - 3.6	0.7 - 4.6	0.7 - 5.6	0.7 - 2.6	0.7 - 3.8	0.7 - 4.8	
E ₆ diquark	0.7 - 4.1	0.7 - 5.6	0.7 - 7.0	0.7 - 2.8	0.7 - 4.5	0.7 - 6.0	
Color Octet Technirho	0.7 - 2.4	0.7 - 3.4	0.7 - 4.5	0.7 - 1.8	0.7 - 2.6	0.7 - 3.6	
Randall-Sundrum	0.7 - 1.1	0.7 - 1.7	0.7 - 1.7	0.7 - 0.8	0.7 - 0.8	0.7 - 0.8	
Graviton			1.9 - 2.4				
W′	0.7 - 1.0	0.7 - 1.0	0.7 - 1.0	N/A	N/A	2.0 - 2.3	
		1.2 - 2.1	1.2 - 3.4	101	0.04		
Ζ′	N/A	1.2 - 1.5	1.3 - 1.5	N/A	N/A	N/A	
			1.9 - 2.6				

ADD virtual Graviton




I. Belotelov et al. CMS NOTE 2006/076

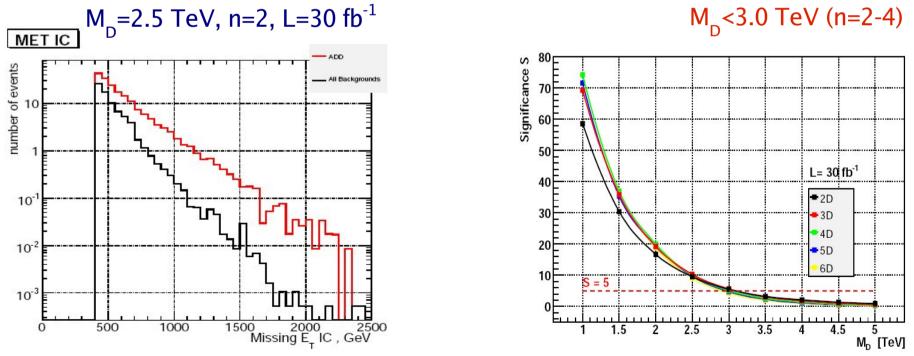

Search for deviation of the $\mu\mu$ DY spectrum due to virtual graviton exchange (KK mode of G) - in ADD ED framework Planck scale: $3 < M_{c} < 10$ TeV and n=3 to 6.

Similar selection/bg as for $\mu\mu$ resonance search Significance (only statistical error) \rightarrow

Discovery limits: includes systematics: misalignment, K factor (1.3 +-0.05), hard scale and PDF, trigger

- Flavour in the era of the LHC - CERN - 11/10/2006


J. Weng et al. CMS NOTE 2006/129


Search for direct graviton emission in ADD type of ED framework (KK mode of G) Topology of single photon events: high pt photon in central η region + high missing pt back to back in ϕ

+ high missing pt back to back in $\boldsymbol{\varphi}$

Selection: Et(miss)>400GeV and pt(γ)>400 GeV, $|\eta|(\gamma)$ <2.4, $\Delta \phi$ >2.5, track veto (pt>40GeV), isolated photon (veto jets)

Largest irreducible bg: $Z/\gamma \rightarrow vv + \gamma$ (also $W^{+-}\gamma$)

- Discovery potential of various Z' and ED scenarios at the TeV scale: Various Z' models and W' Randall-Sundrum model TeV⁻¹ extra dimension model Large extra dimension
- High detector performance \rightarrow search in different channels / topologies
 - resonant peak: lepton/photon/jet final state
 - deviation to continuum
 - large Et(miss) final state

allows: - confirmation of the signal

- identification of the signal

+ model and spin discrimination

→ Rich potential at the LHC in particular *already* at the LHC start up: luminosity < few fb⁻¹