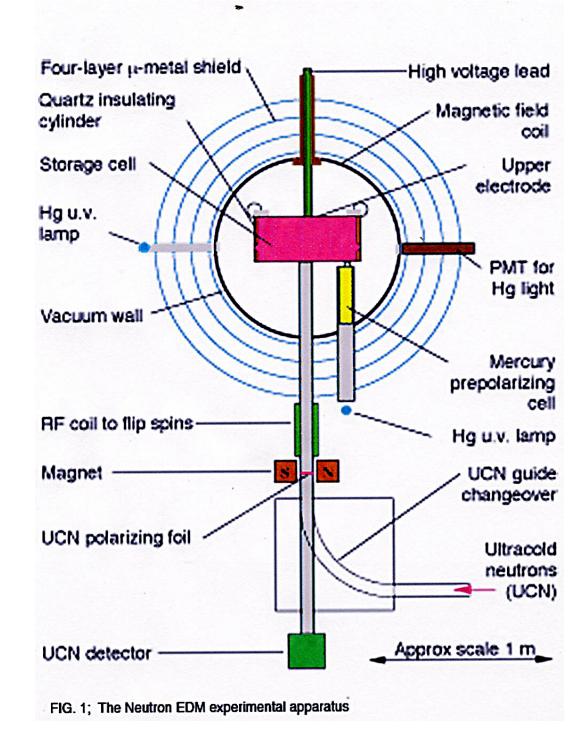

Searching for the Electric Dipole Moment of the Neutron

> Norman F. Ramsey Harvard University

All theorists believed P. 1950 **1950** Purcell & Ramsey [PR. **78** 807]. Test needed for nucl.forcs. Beam Oak Ridge. 1953 $d_n < 5x10^{-20}$ e. cm. 1956 Lee & Yang suggest P failure in weak nucl. force. Reference to our 1950 paper but summarize just our 1953 expt. I begin ⁶⁰Co expt with L.Roberts. Oak Ridge delay. Wu&Ambler.

1957 Theorists assumed CP & T sym, so $d_n = 0$. But Ramsey and J.D Jackson, et. al. argued that T symmetry was an assumption be tested and the search for an EDM was a good test. $d_n < 10^{-21} \text{ e cm}$ Beam 1964 Oak Ridge.

1964	Failure of CP in K ⁰ _L so T			
	sym fail if CPT conserved			
1967	$d_n < 4x10^{-23}$ e cm. Beam Oak R			
1973	Beam Grenoble $d_n < 4x10^{-24}$ e cr			
1984	$d_n < 3x10^{-25}$ e cm. Bottle expts.			
	St Peters, Grenoble			
1999	$d_n < 6.3 \times 10^{-26}$ e cm St Peters, Gr			
2006	$d_n < 3.0 \times 10^{-26}$ e cm Grenoble [ge			


TABLE 1. Upper 90% Confidence Levels on Principal T Nonconserving Interaction Parameters.

The Parameters Are Defined in Khriplovich [Nucl. Phys. A449, 750 (1986) and Ann. Phys. 186, 1 (1988)]. This Table Is Based in Part on Tables Prepared by Fortson and Barr. [Corrected 06-17-06 From C.L. Baker, et al Phys. Rev. Lett. (2006)].

System>	n	199 _{Hg}	TIF	205 _{Tl}	
Property (Units)					
d (x 10^{-26} e cm)	<3.0	< 0.063	$\{d_p < 16,000\}$		
<23,000	Hadronic Parameters:				
Qs (x $10^{-11} e \text{ fm}^3$)		<1.6	<100	<23,000	
η (x 10 ⁻⁶)		<1,200	<20,000		
η _q (x 10 ⁻⁶)	<13	<2.5			
$\overline{\theta}_{QCD} (x \ 10^{-6})$	<1.3	<9.4	<60	<4,000	
^ε q,susy	< 0.0014	<0.005	< 0.08		
<1.3					
^ɛ e,susy			< 0.012	<0.5	
	Semileptonic Parameters:				
$C_{T}(x \ 10^{-6})$	< 0.005	<0.5			
C _S (x 10 ⁻⁶)	< 0.23	<20	< 0.3	<20	
Leptonic Parameter:					
de		<4.4	<40	<0.3	
System>	n	199 _{Hg}	TIF	205 _{Tl}	

FUTURE

Russian Experiments Reactor n's in liquid ⁴He at Grenoble Spallation n's in liquid ⁴He at Los Alamos and Oak Ridge **Other Experiments**

