How to measure g-2 with 15 GeV muons

Francis Farley
Yale

Present situation

$$
\begin{aligned}
& \text { BNL experiment } 0.00116592080 \text { (63) } 0.54 \mathrm{ppm} \\
& \text { Phys. Rev. D 73, 072003-1 (2006) } \\
& \text { theory } \\
& 0.00116591795 \text { (59) } \\
& 0.51 \mathrm{ppm} \\
& \text { de Raphael, Miller, Roberts Reports on Progress in Physics } \\
& \text { S. Eidelman } \\
& \text { ICHEP conference, July } 2006 \\
& \text { exp - theory } 0.00000000285 \text { (86) } \\
& 2.44 \pm 0.74 \mathrm{ppm} \\
& 3.3 \text { sigma }
\end{aligned}
$$

Can we do $10 \times$ better......$\pm 50 \mathrm{ppb}$?
$f=a(e / 2 r m c) B \quad$ Measure f, know B, calculate a
f is independent of particle energy
error in $f \quad \Delta^{f}=\frac{\sqrt{ } 2}{T \sqrt{ } N} \quad$ proportional to $1 / T$
$\Delta a / a=\Delta f / f=\frac{\sqrt{2}}{f T \sqrt{ } N}=\frac{\sqrt{2}}{n \sqrt{ } N}$
muon lifetime
at 3.1 GeV
at 15 GeV
$2.2 \mu s^{n}=$ number of cycles
$64 \mu \mathrm{~s}$
$320 \mu s$
At 15 GeV , more cycles to measure more accuracy for same cou
g-2 period

1.5 Tesla	$4.4 \mu s$
3.0 Tesla	$2.2 \mu \mathrm{~s}$

Storage ring requirements

Need to focus the particles know the magnetic field to better than 50 ppb

Muons are spread in radius field should be same at all radii
3.1 GeV magic energy use uniform magnetic field electric quadrupole focusing
at 3.1 GeV electric field does not affect g -2 frequency
snags: lifetime only $\mathbf{6} \mathbf{\$}$
cannot increase B electric field gets too large
Build an AG ring in which mean field is independent of radius calibrate B with protons in flight 15 GeV lifetime $=320 \mu \mathrm{~s} \times 5$ increase B $\quad \times 2$

Design of AG Ring

Mean field independent of radius (momentum) $\quad R_{\infty} \propto \quad p$
Momentum compaction factor $\alpha=(p / R) \cdot d R / d p=1$
Well-known formula $\alpha=1 Q_{h}^{2}$
Courant \& Snyder, Annals of Physics (1958)
Example: weak focusing $Q_{h}=\sqrt{ }(1-n)$

$$
\alpha=1 /(1-n)
$$

$$
\text { If } a=1, Q_{h}=1
$$

horizontal resonance

Experts say you cannot have $\alpha=1$

Uniform field

No vertical focusing
Use electric quadrupoles - magic energy

$$ is same for all radii

Calculate horizontal tune Q

To measure magnetic field

cannot use NMR probes because of azimuthal gradients

1) locate muons in radius
2) inject 15 GeV polarised protons on the same track

Locate muons in radius

particles are bunched we can measure their radius ... very precis for muons for protons
Inject polarised protons on the same track

To measure magnetic field

inject transversely polarised protons of same momentum

particles of same momentum have to follow the same orbit rotation frequency determines the orbit 15 GeV polarised protons used in RHIC

protons precess in horizontal plane counters above and below measure up/down asymmetry
Asymmetry
0.006
counting rate
1 MHz

We are using $g-2$ of proton to measure the magnetic field B

$$
\begin{aligned}
& a=1.789284739 \\
& f_{s}=(1+a) e B / 2 r m c \\
& f_{a}=a \operatorname{eB} / 2 r \mathrm{mc}
\end{aligned}
$$

g-2 period
10 million cycles
counts/fill
asymmetry
62 MHz

$\mathrm{Dp} / \mathrm{p} 1 \theta^{4}$ proton beam is only 1 mm radially all protons see same field no wash out in 10 million cycles

We are measuring the ratio
muon anomalous moment
proton anomalous moment

NO messy corrections
diamagnetism of water molecule paramagnetic salts
vacuum chamber walls

Measuring proton radius

protons are bunched measure rotation frequency
Dp/p $1 \theta^{4}$
width of beam 1 mm
small phase space
scan in radius to map field vs R
automatically averages in azimuth
no calibration or corrections
pitch correction is very small
tweak field with pole face windings to get B independent of R
apply vertical electric field to move protons up/down
$1 \mathrm{kV} / \mathrm{cm}$ would move the median plane up 1 cm

Challenges

how high can we get the magnetic field field stability
rapid switching from muons to protons

where to put decay electron counters

muon distribution in vertical plane pitch correction

20 ppb
15 GeV muon source \qquad 5×190 per year
plus polarised protons

Why bother ??

Another nail the coffin of the standard model
Test the next theory
Supersymmetry

$$
\delta a_{\mu}=1.2 \mathrm{ppm} \times \frac{\tan \beta}{M^{2}}
$$

M is in units of 100 GeV
current value

$$
\begin{aligned}
M^{2} & =0.5 \tan \beta \\
\text { e.g. } \tan \beta & =20, \quad M=320 \mathrm{GeV}
\end{aligned}
$$

current limits
1σ

$$
0.38<\frac{\mathrm{M}^{2}}{\tan \beta}<0.70
$$

Nuclear Instruments and Methods, A 523251 (2004) hep-ex/0307024

Advantages

no electric quadrupoles

no trolley

calibration
correction for diamagnetism in water
paramagnetism in surrounding materials
no inflector to cancel the field in the magnet at injection
simple kicker using ferrite
higher energy ... eg 15 GeV
increased accuracy
longer lifetime reduces the counting rate
less signal overlap
less residual flash
higher magnetic fields
increased accuracy

Proton polarimeter

counters above and below measure up/down asymmetry

Asymmetry 0.01
Measure say 10 events
$N A^{2}=100$
10^{6} precession cycles
Df/f~ 0.1 ppm

Vertical questions

For muons

where is the median plane?
Hard to relate to the trolley map !!!
amplitude of vertical oscillations ?

Protons

protons have the same median plane as muons
inject protons with small vertical angle is the same? map vs vertical amplitude

We know more about the protons than the muons !
Easier to relate proton data to what we know about the muons

Apply vertical electric field to move protons up/down
$1 \mathrm{kV} / \mathrm{cm}$ would move the beam up 1 cm

Bo夂m In

Measuring proton radius

protons are bunched measure rotation frequency
Dp/p~10
small phase space width of beam 1 mm
measure 10,000 turns 3 ms error in radius $<0.1 \mathrm{~mm}$
Better than the trolley !!!
scan in radius to map field vs R
automatically averages in azimuth
no calibration or corrections pitch correction is very small
tweak field with pole face windings to get B independent of R
Is B then independent of z ?
No! $d^{2} B / d \hat{2}=0$, so $d B / d z$ is constant but may not equal zero B can vary linearly with $z \ldots$... but error is opposite above and below mid-plane

What you get with option key
¡ $€ 申 \infty$ § $\|^{\text {ao }}-\neq$

$$
\begin{aligned}
& \text { àßวf®" } \left.\Delta \Delta^{\circ}\right\urcorner \ldots æ \\
& \Omega \approx c ̧ V) \sim \mu \leq \geq \div
\end{aligned}
$$

$\sigma \Delta \psi \eta$ ү $\varphi \theta \pi \mathrm{x} \wedge \lambda \delta \varphi$

