Proton, etc. EDM

William Morse

9 October 06 CERN W.M. Morse

Intrinsic EDM

- EDM aligned with spin violates T and P
- Spin precesses in an electric field

 $\frac{\partial \vec{S}}{\partial t} = \vec{d} \times \vec{E} \qquad \vec{d} = d \frac{\vec{S}}{S}$

Orlov EDM Resonance

Modulate velocity with RF at the spin precession frequency

$$\frac{\partial \vec{S}}{\partial t} = \vec{d} \times (c\vec{\beta} \times \vec{B})$$
$$\frac{\partial S_V}{\partial t} = \frac{dS_L c\vec{\beta}B}{S}$$

9 October 06 CERN W.M. Morse

Magnetic Moment Precession in Storage Ring Magnetic Field

- ω_c is revolution or "cyclotron frequency"
- Q_{spin} is spin precession per revolution or "spin tune" = $G\gamma$
- Where G = g/2 1
- $\mu = geS/2m$

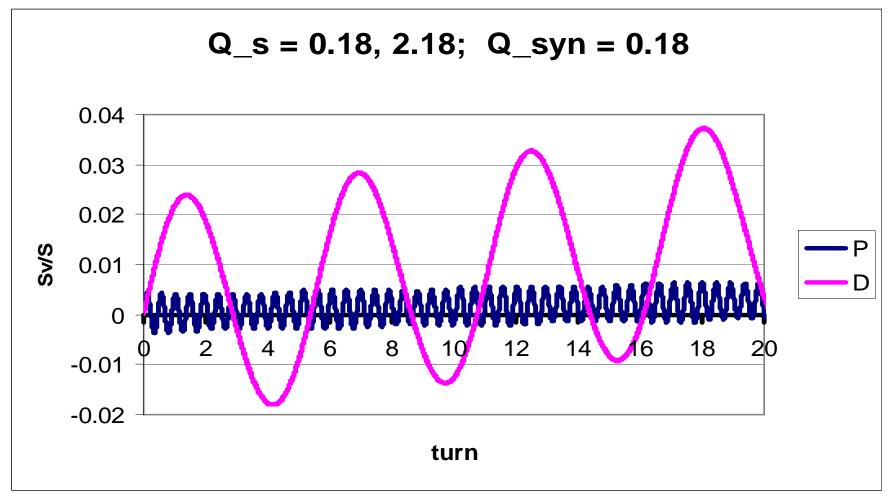
$$\frac{\partial(\vec{\beta} \bullet \vec{S})}{\partial t} = \frac{e}{m}G\vec{S}_T \bullet(\vec{\beta} \times \vec{B})$$

 $Q_{syn} = m \pm G < \gamma >$

	е	р	n	D	He3
S	1/2	1/2	1/2	1	1/2
d (θ_{QCD})	≈ 0	≈ 1	≈ -2/3	≈ 1/3	≈ -2/3
g	2.002	5.586	-3.826	1.715	-4.255
G=g/2-1	.001	1.586	-0.913	-0.143	-1.13
m	NA	2	NA	0	1 or 2

Parameters for $Q_{syn} = 0.14-0.19$

	Proton (m=2)	Deut (m=0)	He3 (m=2)	He3 (m=1)
β	0.67-0.69	0 - 0.66	0.85-0.86	0.13-0.3
P GeV/c	0.85-0.89	0 - 1.6	4.5-4.7	0.4-0.9


Torque due to EDM

$$\frac{\partial \vec{S}}{\partial t} = \vec{d} \times (c\vec{\beta} \times \vec{B})$$

$$\frac{\Delta S_V}{|S|} = \frac{1}{|S|} dc \Delta \beta BT$$

9 October 06 CERN W.M. Morse

D and P with same B, d, β , d β , ... P is $\approx 1/3 \text{ xD}$

Same Ring (B, ρ and f_{sync}) Optimized for Both P and D?

D polarimetery has optimum around $\beta \approx 0.6$ dE/dx $\propto \beta^{-2}$, E_k $\propto \beta^2$

	P (GeV/c)	β	Synchrotron harmonic
D	0.7	0.34	2N
Р	0.86	0.68	Ν

Conclusions

- Can also measure edm of proton with storage ring method
- Physics is complementary to deuteron
- m = 2, so less sensitive
- Optimized proton experiment is a different experiment from optimized deuteron exp.
- Reuse much of the ring, but not all