Wtb Anomalous Top Couplings

António Onofre (onofre@lipc.fis.uc.pt)

ATLAS Collaboration

Flavour in the Era of the LHC, 9th-11th October, CERN
Outline

- Introduction
- Probing the Wtb vertex
- New Observables
- Analysis & Systematic Errors
- New Combination of Observables
- Conclusions
Introduction

Studying the Wtb Vertex with $t\bar{t}$ events @ LHC

Production X-section:

$\sigma \sim 833\text{pb} @ 14\text{TeV}$

Semileptonic Topology:

- **Golden Channel**

- **Clean Topology:** $t\bar{t}$ back to back

Used for several studies

- ≥ 4 jets, $\Delta R=0.4$
- $p_T>40\text{ GeV}$

- $p_T>20\text{ GeV}$

- 2 b-jets

- $t(\text{lep})$

- $W(\text{had})$

- $t(\text{had})$

Flavour in the Era of the LHC, 9th-11th October, CERN
Introduction

Studying the Wtb Vertex with $t\bar{t}$ events @ LHC

Measure W polarization (F_0, F_L, F_R) through:

\[
\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*_\ell} = \frac{3}{8} (1 + \cos\theta^*_\ell)^2 F_R + \frac{3}{8} (1 - \cos\theta^*_\ell)^2 F_L + \frac{3}{4} \sin^2\theta^*_\ell F_0
\]

Using lepton angular distribution (with respect to top direction) in W cm system:

Finite (t,W) width corrections have a negligible effect

t,W on-shell Ok

SM(LO): $F_0=0.703$, $F_L=0.297$, $F_R=3.6\times10^{-4}$
(NLO): $F_0=0.695$, $F_L=0.304$, $F_R=0.001$

Flavour in the Era of the LHC, 9th-11th October, CERN
Probing the W_{tb} vertex

Anomalous Couplings in the $t \rightarrow bW$ decay:

\[\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^\mu (V_L P_L + V_R P_R) t W^-_\mu \]

\[-\frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^\mu\nu q_\nu}{M_W} (g_L P_L + g_R P_R) t W^-_\mu + \text{h.c.} \]

PRD45 (1992) 124:
- $f_1^R = V_R$
- $f_2^L = -g_L$
- $f_2^R = -g_R$

PRD67 (2003) 014009 ($m_b \neq 0$)

How to test these new couplings?

They affect the F_0, F_L and F_R and the angular distribution
Probing the Wtb vertex

- Sensitivity limited by systematic errors
 - Related theoretical observables are affected differently by systematic errors (experimental point of view)

- Several methods were used to test the ATLAS sensitivity:
 - Extract limits from measured F_0, F_L and F_R;
 - Fit the angular distr. with new observables $\rho_R = F_R/F_0$ and $\rho_L = F_L/F_0$;
 - Fit with the known dependence with V_R, g_L and g_R;
 - Use new Asymmetries and study their dependence with V_R, g_L and g_R.

Flavour in the Era of the LHC, 9th-11th October, CERN
New Observables

Anomalous Couplings in the $t \rightarrow bW$ decay

- Use $t \rightarrow bW$ decay in Semileptonic $t \bar{t}$ Events
- New observables $\rho_R = F_R/F_0$ and $\rho_L = F_L/F_0$
 - SM(LO): $\rho_L = 0.423$, $\rho_R = 0.0005$ (m_b ≠ 0)
 - (NLO): $\rho_L = 0.438$, $\rho_R = 0.002$
- New Angular Asymmetries: A_{FB}, A_+, and A_-
 - $A_t = \frac{N(x>t)-N(x<t)}{N(x>t)+N(x<t)}$
 - $A_{FB} = \frac{3}{4} [F_R - F_L]$
 - $A_+ = 3\beta [F_0 + (1 + \beta)F_R]$
 - $A_- = -3\beta [F_0 + (1 + \beta)F_L]$
 - SM(LO):
 - $A_{FB} = \ -0.2225$, $A_+ = 0.5482$, $A_- = -0.8397$
 - (NLO): $A_{FB} = -0.2269$, $A_+ = 0.5429$, $A_- = -0.8402$

Flavour in the Era of the LHC, 9th-11th October, CERN
New Observables

Anomalous Couplings in the $t \rightarrow bW$ decay

- Dependence of $\rho_R = F_R / F_0$ and $\rho_L = F_L / F_0$ with new couplings:

 $\left(m_b \neq 0 \right)$

- Dependence of New asym A_+ and A_- with new couplings:

Flavour in the Era of the LHC, 9th-11th October, CERN
Analysis & Systematic Errors

New Discriminant Analysis for Semileptonic Channel:
(already presented in the previous meetings)

- Preselection: 1 lepton (p_T>25GeV, |η|<2.5)
 ≥4 jets (p_T>20GeV, |η|<2.5)
 2 b-jets and p_T>20GeV

- Discriminant Variables:
 \(m_W, m_{T(had)}, m_{T(lep)}, p_T-jets \)

- Likelihood Ratio:
 \[L_S = \prod_{i=1}^{n} P_i^{\text{signal}} \]
 \[L_B = \prod_{i=1}^{n} P_i^{\text{back}} \]

Statistics (10fb^{-1}):
- \(\Delta \) Signal: \(\varepsilon=9\% \) (220k)
- \(\Delta \) Back: 36k events

Flavour in the Era of the LHC, 9th-11th October, CERN
Anomalous Couplings in the $t \rightarrow bW$ decay

Results for the different observables:

Semileptonic Channel:

<table>
<thead>
<tr>
<th>Observable</th>
<th>$L = 10\text{fb}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_0</td>
<td>0.699 ± 0.004 (stat)</td>
</tr>
<tr>
<td>F_L</td>
<td>0.299 ± 0.004 (stat)</td>
</tr>
<tr>
<td>F_R</td>
<td>0.0021 ± 0.0030 (stat)</td>
</tr>
<tr>
<td>ρ_L</td>
<td>0.4274 ± 0.0080 (stat)</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.0004 ± 0.0021 (stat)</td>
</tr>
<tr>
<td>A_{FB}</td>
<td>-0.2231 ± 0.0035 (stat)</td>
</tr>
<tr>
<td>A_+</td>
<td>0.5472 ± 0.0032 (stat)</td>
</tr>
<tr>
<td>A_-</td>
<td>-0.8387 ± 0.0018 (stat)</td>
</tr>
</tbody>
</table>

Limits on Couplings (one at a time different from zero):

<table>
<thead>
<tr>
<th>V_R</th>
<th>$g_L = g_R = 0$</th>
<th>$g_L = 0$</th>
<th>$g_R = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_0</td>
<td></td>
<td>[-0.141, 0.108]</td>
<td>[-0.0367, 0.0228]</td>
</tr>
<tr>
<td>F_L</td>
<td>[-0.204, 0.191]</td>
<td>[-0.175, 0.144]</td>
<td>[-0.0309, 0.0231]</td>
</tr>
<tr>
<td>F_R</td>
<td>[-0.0770, 0.146]</td>
<td>[-0.0666, 0.0346]</td>
<td></td>
</tr>
<tr>
<td>ρ_L</td>
<td>[-0.254, 0.206]</td>
<td></td>
<td>[-0.0275, 0.0227]</td>
</tr>
<tr>
<td>ρ_R</td>
<td>-0.0282, 0.0987</td>
<td>-0.0455, 0.0129</td>
<td></td>
</tr>
<tr>
<td>A_{FB}</td>
<td>[-0.118, 0.148]</td>
<td>[-0.0902, 0.0585]</td>
<td>[-0.0265, 0.0227]</td>
</tr>
<tr>
<td>A_+</td>
<td>[-0.140, 0.146]</td>
<td>[-0.112, 0.0819]</td>
<td>-0.0213, 0.0164</td>
</tr>
<tr>
<td>A_-</td>
<td>[-0.0664, 0.120]</td>
<td>[-0.0620, 0.0299]</td>
<td>-0.0166, 0.0282</td>
</tr>
</tbody>
</table>
New combination of observables

...but one can do better by combining the most sensitive measurements

A_+, A_-, ρ_R and ρ_L
New combination of observables

Anomalous Couplings in the $t \rightarrow bW$ decay

Correlations Taken into Account: A_+, A_-, ρ_R and ρ_L

1σ Limits:

<table>
<thead>
<tr>
<th>V_R</th>
<th>g_L</th>
<th>g_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{\pm}, \rho_{R,L}$</td>
<td>$[-0.0195, 0.0906]$</td>
<td>\times</td>
</tr>
<tr>
<td>$A_{\pm}, \rho_{R,L}$</td>
<td>\times</td>
<td>$[-0.0409, 0.00926]$</td>
</tr>
<tr>
<td>$A_{\pm}, \rho_{R,L}$</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>$A_{\pm}, \rho_{R,L}$</td>
<td>\times</td>
<td>$[-0.0412, 0.00944]$</td>
</tr>
<tr>
<td>$A_{\pm}, \rho_{R,L}$</td>
<td>$[-0.0199, 0.0903]$</td>
<td>\times</td>
</tr>
</tbody>
</table>

Studies with Full simulation under way (CSC):

$g_L = -0.016 \pm 0.067$

Flavour in the Era of the LHC, 9th-11th October, CERN
Conclusions

- The ATLAS sensitivity to anomalous couplings at the Wtb vertex was presented for a luminosity of $10 fb^{-1}$. With this luminosity it is possible to constrain the anomalous couplings to the level of few % (taking into account the expected systematic errors).

- New observables were introduced (A_+, A_-, ρ_R and ρ_L) which have proven to be more sensitivity to new couplings.

- The written contribution to the final report with all these results was sent to the contact persons.
Conclusions

Wtb Anomalous Couplings in Top Quark Decays

J. A. Aguilar–Saavedra¹, J. Carvalho², N. Castro², A. Onofre²,³, F. Veloso³

¹ Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, E-18071 Granada, Spain
² LIP - Dep. Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal
³ UCP, R. Dr. Mendes Pinheiro, 24, 3080 Figueira da Foz, Portugal

Abstract

The sensitivity of the ATLAS experiment to \(Wtb \) anomalous couplings is studied with top quark pairs produced at the LHC which decay through the semileptonic channel, \(t \rightarrow W^+b, \bar{t} \rightarrow W^-\bar{b} \) with one of the \(W \) bosons decaying leptonically and the other hadronically. Several observables are discussed in order to achieve the best precision level on the measurement of the anomalous couplings. Combining the most sensitive observables, the precision achieved in the determination of \(Wtb \) anomalous couplings is of a few percent in the semileptonic channel alone.