

Wtb Anomalous Top Couplings

António Onofre (onofre@lipc.fis.uc.pt)

ATLAS Collaboration

Outline

- ☑ Introduction
- Probing the Wtb vertex
- Mew Observables
- M Analysis & Systematic Errors
- ✓ New Combination of Observables
- **✓** Conclusions

☑ Introduction Studying the Wtb Vertex with tt events @ LHC

Production X-section: σ~ 833pb @ 14TeV

Semileptonic Topology:

Golden Channel

Clean Topology:

tt back to back

Used for several studies

☑ Introduction Studying the Wtb Vertex with tt events @ LHC

Measure W polarization (F_0, F_L, F_R) through:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}^*} = \frac{3}{8} (1 + \cos\theta_{\ell}^*)^2 F_R + \frac{3}{8} (1 - \cos\theta_{\ell}^*)^2 F_L + \frac{3}{4} \sin^2\theta_{\ell}^* F_0$$

Using lepton angular distribution (with respect to top direction) in W cm system:

SM(LO): $F_0=0.703$, $F_L=0.297$, $F_R=3.6\times10^{-4}$

(NLO): F_0 =0.695 , F_L =0.304 , F_R =0.001

▶ Anomalous Couplings in the t→bW decay:

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{L} P_{L} + V_{R} P_{R}) t W_{\mu}^{-}$$

$$-\frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu \nu} q_{\nu}}{M_{W}} (g_{L} P_{L} + g_{R} P_{R}) t W_{\mu}^{-} + \text{h.c.}$$
PRD45 (1992) 1
$$f_{1}^{R} \equiv V_{R}$$

$$f_{2}^{L} \equiv -g_{L}$$

$$f_{2}^{R} \equiv -g_{R}$$

PRD45 (1992) 124:

$$f_1^R \equiv V_R$$
 $f_2^L \equiv -g_L$
 $f_2^R \equiv -g_R$

PRD67 (2003) 014009 $(m_b \neq 0)$

▶ How to test these new couplings?

They affect the F_0 , F_1 and F_R and the angular distribution

- Sensitivity limited by systematic errors
 - » Related theoretical observables are affected differently by systematic errors (experimental point of view)
- Several methods were used to test the ATLAS sensitivity:
 - Extract limits from measured F₀,F_L and F_R;
 - » Fit the angular distr. with new observables $\rho_R = F_R/F_0$ and $\rho_L = F_L/F_0$;
 - » Fit with the known dependence with V_R , g_L and g_R ;
 - » Use new Asymmetries and study their dependence with $V_{\rm R}$, $g_{\rm L}$ and $g_{\rm R}$.

✓ New Observables

Anomalous Couplings in the t→bW decay

SM(LO):
$$\rho_L = 0.423$$

 $\rho_R = 0.0005 \ (m_b \neq 0)$

(NLO): ρ_1 = 0.438 ρ_R = 0.002

New Angular Asymmetries: A_{FB}, A₊ and A₋

$$A_t = \frac{N(x>t) - N(xt) + N(x $A_{\text{FB}} = \frac{3}{4} [F_R - F_L],$$$

$$A_{\text{FB}} = \frac{3}{4} [F_R - F_L],$$

$$A_{+} = 3\beta [F_0 + (1+\beta)F_R],$$

$$A_{-} = -3\beta [F_0 + (1+\beta)F_L],$$

SM(LO):

$$A_{\rm FB} = -0.2225, A_{+} = 0.5482, A_{-} = -0.8397$$

(NLO): A_{FB} =-0.2269 , A_{+} =0.5429 , A_{-} =-0.8402

✓ New Observables

Anomalous Couplings in the t→bW decay

ightharpoonup Dependence of $\rho_R = F_R/F_0$ and $\rho_L = F_L/F_0$ with new couplings:

 $(m_b \neq 0)$

\square Dependence of New asym A_{\perp} and A_{\perp} with new couplings:

Flavour in the Era of the LHC, 9th-11th October, CERN

☑ Analysis & Systematic Errors

New Discriminant Analysis for Semileptonic Channel:

(already presented in the previous meetings)

▶ Preselection: 1 lepton (p_{\uparrow} >25GeV, $|\eta|$ <2.5)

 \geq 4 jets (p_T>20GeV, | η |<2.5)

2 b-jets and \$1 > 20GeV

▶ Discriminant Variables:

 $m_W, m_{t(had)}, m_{t(lep)}, p_{T-jets}$

$$\mathcal{L}_S = \prod_{i=1}^n \mathcal{P}_i^{signal} \mathcal{L}_B = \prod_{i=1}^n \mathcal{P}_i^{back}$$

▶ Likelihood Ratio:

ATLFAST

▶ Statistics (10fb⁻¹):

 \triangle Signal: ε =9% (220k)

△ Back: 36k events

☑ Analysis & Systematic Errors

AT LAS

Anomalous Couplings in the t→bW decay

▶ Results for the different observables:

Semileptonic Channel:

L=10fb-1

Observable		Result	
F_0	0.699	$\pm 0.004 (\mathrm{stat})$	$\pm 0.020 ({\rm sys})$
F_L	0.299	$\pm 0.004 (\mathrm{stat})$	$\pm 0.019 ({\rm sys})$
F_R	0.0021	$\pm 0.0030 (\mathrm{stat})$	$\pm 0.0033 ({\rm sys})$
$ ho_L$	0.4274	$\pm 0.0080 ({\rm stat})$	$\pm 0.0356 ({ m sys})$
$ ho_R$	0.0004	$\pm 0.0021 ({\rm stat})$	$\pm 0.0016 ({\rm sys})$
$A_{ m FB}$	-0.2231	$\pm 0.0035 (\mathrm{stat})$	$\pm 0.0130 ({\rm sys})$
A_{+}	0.5472	$\pm 0.0032 ({\rm stat})$	$\pm 0.0099 (\mathrm{sys})$
A_	-0.8387	$\pm 0.0018 (\mathrm{stat})$	$\pm 0.0028 (\mathrm{sys})$

▶ Limits on Couplings (one at a time different from zero):

	$(g_L = \begin{matrix} V_R \\ g_R = 0) \end{matrix}$	$(V_R = g_R = 0)$	$(V_R = g_L = 0)$
$\overline{F_0}$	_	[-0.141, 0.108]	[-0.0367, 0.0228]
F_L	[-0.204, 0.191]	[-0.175, 0.144]	[-0.0309, 0.0231]
F_R	[-0.0770, 0.146]	[-0.0666, 0.0346]	_
$ ho_L$	[-0.254, 0.206]		[-0.0275, 0.0227]
ρ_R	[-0.0282, 0.0987]	[-0.0455, 0.0129]	_
$A_{ m FB}$	[-0.118, 0.148]	[-0.0902, 0.0585]	[-0.0268, 0.0227]
A_{+}	[-0.140, 0.146]	[-0.112, 0.0819]	[-0.0213, 0.0164]
A_{-}	[-0.0664, 0.120]	[-0.0620, 0.0299]	[-0.0166, 0.0282]

✓ New combination of observables

...but one can do better by combining the most sensitive measurements

 A_+ , A_- , ρ_R and ρ_L

✓ New combination of observables

Anomalous Couplings in the t→bW decay

 \boxtimes Correlations Taken into Account: A_+,A_-,ρ_R and ρ_L

1σ Limits:

	V_R	g_L	g_R
$A_{\pm}, \rho_{R,L}$	[-0.0195, 0.0906]	×	×
$A_{\pm}, \rho_{R,L}$	×	[-0.0409, 0.00926]	×
$A_{\pm}, \rho_{R,L}$	×	X	[-0.0112, 0.0174]
$A_{\pm}, \rho_{R,L}$	X	[-0.0412, 0.00944]	[-0.0108, 0.0175]
$A_{\pm}, \rho_{R,L}$	[-0.0199, 0.0903]	×	[-0.0126, 0.0164]
		•	

\boxtimes Studies with Full simulation under way (CSC):

Flavour in the Era of the LHC, 9th-11th October, CERN

Two Dimension Regions:

- ☑ The ATLAS sensitivity to anomalous couplings at the Wtb vertex was presented for a luminosity of 10fb⁻¹. With this luminosity it is possible to constrain the anomalous couplings to the level of few % (taking into account the expected systematic errors)
- New observables were introduced (A_+, A_-, ρ_R) and ρ_L which have proven to be more sensitivity to new couplings
- ☐ The written contribution to the final report with all these results was sent to the contact persons

Wtb Anomalous Couplings in Top Quark Decays

J. A. Aguilar-Saavedra¹, J. Carvalho², N. Castro², A. Onofre^{2,3}, F. Veloso³

Abstract

The sensitivity of the ATLAS experiment to Wtb anomalous couplings is studied with top quark pairs produced at the LHC which decay through the semileptonic channel, $t \to W^+b$, $\bar{t} \to W^-\bar{b}$ with one of the W bosons decaying leptonically and the other hadronically. Several observables are discussed in order to achieve the best precision level on the measurement of the anomalous couplings. Combining the most sensitive observables, the precision achieved in the determination of Wtb anomalous couplings is of a few percent in the semileptonic channel alone.

¹ Departamento de Física Teó rica y del Cosmos and CAFPE, Universidad de Granada, E-18071 Granada, Spain

² LIP - Dep. Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal

³ UCP, R. Dr. Mendes Pinheiro, 24, 3080 Figueira da Foz, Portugal