Time-dependent CP Violation (tCPV) at Belle -- New results at ICHEP2006 --

Masashi Hazumi
 (KEK)

October. 10, 2006

The Belle (B Factory) Physics Program

I. CP Violation in B Decays
II. Fundamental SM Parameters (Complex Quark Couplings)
III. Beyond the SM (BSM)
IV. Unanticipated New Particles

Cabibbo-KobayashiMaskawa
(CKM) matrix
tCPV measurements at the heart of I, II and III !!

$\mathrm{t} C P \mathrm{~V}$ in B^{0} decays

New results shown at ICHEP2006

Still new results but not covered in this talk

Still new results but not covered in this talk

Integrated Luminosity

KEKB for Belle
htegrated Luminosity(log)

β / ϕ_{1} with trees - Results -

$B^{0} \rightarrow J / \psi K_{L}^{0}$

p_{KL} information is poor \rightarrow lower purity

535 M B $\overline{\mathrm{B}}$ pairs

previous measurement $\sin 2 \phi_{I}=0.652 \pm 0.044$ (388 M B \bar{B} pairs)

$\sin 2 \phi_{1}=0.642 \pm 0.031$ (stat) ± 0.017 (syst)
 $A=0.018 \pm 0.021$ (stat) ± 0.014 (syst)

2006: BaBar + Belle

β / ϕ_{1} with penguins

$\mathrm{b} \rightarrow \mathrm{s}$ tCPV: One of the best probes

SUSY as an example

some of recent QCDF estimates

$$
\sin 2 \beta_{\mathrm{eff}}^{\mathrm{f}}-\sin 2 \beta
$$

Results for

3 theoretically-clean modes $\phi K^{0}, \eta^{\prime} K^{0}, K s K s K s$

\mathcal{B} Belle 2006: $B^{0} \rightarrow \phi K^{0}$ signal

Three modes

$$
\begin{aligned}
& 114 \pm 17 \\
& \phi K_{L} \text { signal }
\end{aligned}
$$

Belle 2006: tCPV in $B^{0} \rightarrow \phi K^{0}$

" $\sin 2 \phi_{1} "=+0.50 \pm 0.21$ (stat) ± 0.06 (syst) $\mathcal{A}=+0.07 \pm 0.15$ (stat) ± 0.05 (syst)

$\Delta \mathrm{t}$ distribution and asymmetry

$>\phi K_{S}$ and ϕK_{L} combined
$>$ background subtracted
$>$ good tags
$>\Delta \mathrm{t} \rightarrow-\Delta \mathrm{t}$ for ϕK_{L}

\mathcal{P} Belle 2006: $B^{0} \rightarrow \eta^{\prime} K^{0}$ signal

```
1421\pm46
\eta'K}\mp@subsup{K}{S}{}\mathrm{ signal
```

```
454 \pm39
\eta'K}\mp@subsup{K}{L}{}\mathrm{ signal
```


hep-ex/0608039

Belle 2006: tCPV in $B^{0} \rightarrow \eta^{\prime} K^{0}$

$$
\begin{aligned}
" \sin 2 \phi_{1} " & =+0.64 \pm 0.10(\text { stat }) \pm 0.04(\text { syst }) \\
\mathcal{A} & =-0.01 \pm 0.07(\text { stat }) \pm 0.05(\text { syst })
\end{aligned}
$$

$\Delta \mathrm{t}$ distribution and asymmetry

$>\eta^{\prime} K_{S}$ and $\eta^{\prime} K_{L}$ combined
$>$ background subtracted
$>$ good tags
$>\Delta \mathrm{t} \rightarrow-\Delta \mathrm{t}$ for $\eta^{\prime} K_{L}$

Δ t distribution and asymmetry

2006: ϕ_{1} with $b \rightarrow s$ Penguins

Preliminary

Smaller than $\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c} s}$ in all of 9 modes

More statistics crucial for mode-by-mode studies

Standard penguin (bird), or something else (rabbit may be) ?

A comment (e-mail) from Jonat in the Moon, why not in a penguin diagram?

More statistics crucial for mode-by-mode studies

$b \rightarrow s$ Penguin : Radiative

Signals: well established (BF~SM) $n \longrightarrow$ New approach for NP $B \rightarrow K_{S} \pi^{0} \gamma$ tCPV

α / ϕ_{2}

$$
\begin{aligned}
& B \rightarrow \pi^{+} \pi^{-}, \pi^{ \pm} \pi^{0}, \pi^{0} \pi^{0} \\
& B \rightarrow \rho^{0} \rho^{0}, \rho^{ \pm} \rho^{0}, \rho^{+} \rho^{-} \\
& B^{0} \rightarrow(\rho \pi)^{0}
\end{aligned}
$$

$\mathrm{t} C P \mathrm{~V}$ and $\phi_{2}(\alpha)$

With the tree diagram only

$$
\begin{aligned}
& S \pi^{+} \pi^{-}=+\sin 2 \phi_{2} \\
& \mathcal{A} \pi^{+} \pi^{-}=0
\end{aligned}
$$

Mixing diagram

Decay diagram (tree)

3 possibilities: $\pi \pi, \rho \rho, \rho \pi$

Belle 2006: $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$decay (CP asymmetry)

History of $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$decay

2.3σ diff. btw. Belle and BaBar

Interpretation: Direct CP violation+SU(3)

The results support the expectation from $\mathrm{SU}(3)$ symmetry that

$$
A_{C P}\left(\pi^{+} \pi^{-}\right) \sim-3 A_{C P}\left(K^{+} \pi^{-}\right)
$$

N.G. Deshpande and X.-G. He, PRL 75, 1703 (1995)
M. Gronau and J.L. Rosner, PLB 595, 339 (2004)

\[

\]

$\pi \pi$:tough bananas

- $A \pi \pi$ world average \rightarrow observation of large direct CPV
- Large penguin diagram (P) ~ Tree diagram (T)
- Large strong phase difference between P and T

$$
S_{\pi \pi}=\sqrt{1-A_{\pi \pi}^{2}} \sin \left(2 \phi_{2}^{\text {eff }}\right) \quad \phi_{2}^{\text {eff }}=\phi_{2}+\theta
$$

Isospin analysis: flavor $\mathrm{SU}(2)$ symmetry

[Gronau-London 1990]

	Amplitude for
$A^{+-}\left(\overline{\boldsymbol{A}}^{+-}\right)$	$B^{0}\left(\overline{\boldsymbol{B}}^{0}\right) \rightarrow \pi^{+} \pi^{-}$
$\boldsymbol{A}^{00}\left(\overline{\boldsymbol{A}}^{00}\right)$	$\boldsymbol{B}^{0}\left(\overline{\boldsymbol{B}}^{0}\right) \rightarrow \pi^{0} \pi^{0}$
$\boldsymbol{A}^{+0}\left(\overline{\boldsymbol{A}}^{-0}\right)$	$B^{+}\left(\boldsymbol{B}^{-}\right) \rightarrow \pi^{+} \pi^{0}\left(\boldsymbol{\pi}^{-} \pi^{0}\right)$

- Model-independent (symmetry-dependent) method
- $\mathrm{SU}(2)$ breaking effect well below present statistical errors

"Penguin pollution" can be removed by isospin analysis

ϕ_{2} constraints from $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$decay

Belle 2006: ϕ_{2} from B $\rightarrow \rho \pi$

Dalitz analysis + isospin (pentagon) analysis

- 26(Dalitz) $+5\left(\operatorname{Br}\left(\rho^{ \pm} \pi^{ \pm}\right), \operatorname{Br}\left(\rho^{+} \pi^{0}\right), \operatorname{Br}\left(\rho^{0} \pi^{+}\right), \mathcal{A}\left(\rho^{+} \pi^{0}\right)\right.$, and $\left.\mathcal{A}\left(\rho^{0} \pi^{+}\right)\right)$

ICHEP2006: $\operatorname{BaBar}(\pi \pi / \rho \pi / \rho \rho)+\operatorname{Belle}(\pi \pi / \rho \rho)$

$\alpha \quad$ (deg)

consistent with a global fit w/o α / ϕ_{2}

$$
\alpha_{\text {Global Fit }}=\left[98{ }_{-19}^{+5}\right]^{0}
$$

α / ϕ_{2} : Discussions

- $\quad \rho \rho$ sets a "window" around 90°
- $\pi \pi$ chooses the correct position inside the window: revival of $\pi \pi$!
- $\rho \pi$ essential to suppress $\phi_{2} \sim 0^{\circ}$ or 180°
- Good agreement b/w the CKM fit (α determined by others) and the direct measurements
- Still a lot to do

- solution around 0 or 180°, which requires $|\mathrm{P} / \mathrm{T}| \sim 1$, can/should be much more suppressed
- subtleties in statistical analyses with small statistics
- uncertainty in background modeling, unknown phases etc.

CKM Global Fit

Very good overall agreement. O(1) new physics unlikely. Need to be able to detect $\mathrm{O}(0.1)$ effects.

Roughly speaking; $\mathrm{O}(0.1) \sim\left(\mathrm{M}_{\text {top }} / \mathrm{M}_{\mathrm{NP}}\right)^{2}$ or $\sim\left(\mathrm{M}_{\text {top }} / \mathrm{M}_{\mathrm{NP}}\right)$, therefore a reasonable target if TeV new physics exists.

What have we learned ?

- Large CP violation observed \rightarrow large CPV phase established
- approximate CP symmetry, which can be consistent with small CPV (e.g. seen in Kaons), is ruled out.
- Only with B factories, we have succeeded to overconstrain the quark flavor sector for the first time in the history.
- The Kobayashi-Maskawa model of CP violation is now a tested theory.

This is a great historic achievement!

What's next?

Deeper, more fundamental questions !

General Effective Lagrangian and Flavor Symmetries for Quark Flavor Physics

\rightarrow partial breaking of the flavour group:

$$
\begin{gather*}
\mathscr{L}_{\text {Yukawa }}=\bar{Q}_{L} Y_{D} D_{R} \phi+\bar{Q}_{L} Y_{U} U_{R} \phi_{c}+\bar{L}_{L} Y_{L} e_{R} \phi+\text { h.c. } \\
(\overline{3}, 1,1) \tag{3}\\
\text { convenient to treat the } Y
\end{gather*}
$$

- MFV with 1 Higgs [or low $\tan \beta$] \Rightarrow no additional spurions
- MFV with multi Higgs $\quad \Rightarrow$ additional $U(1)$ spurions
- NMFV
\Rightarrow additional $\mathrm{SU}(3)$-breaking spurions

General Effective Lagrangian and Flavor Symmetries for Quark Flavor Physics

G. Isidori - NP benchmarks in flavour physics

TeV New physics for EWSB, DM etc.

$$
\begin{aligned}
& \mathscr{L}_{\text {eff }}=\mathscr{L}_{\text {gange }}\left(A_{\mathrm{i}}, \psi_{\mathrm{i}}\right)+\mathscr{L}_{\text {Higgs }}\left(\phi_{\mathrm{i}}, A_{\mathrm{i}}, \psi_{\mathrm{i}} ; Y\right)+\sum_{\mathrm{d} \geq 5} \frac{\mathrm{c}_{\mathrm{n}}}{\Lambda^{\mathrm{d}-4}} \mathrm{O}_{\mathrm{n}}^{\mathrm{d}}\left(\phi_{\mathrm{i}}, A_{\mathrm{i}}, \psi_{\mathrm{i}}\right) \\
& \longrightarrow 3 \text { identical fermion families } \Rightarrow \text { huge flavour-degeneracy: }
\end{aligned}
$$

Big question 2)
Is there flavor symmetry yet to be discovered ?

Big question 1)

What does the flavor structure of TeV new physics
look like? (How does it taste?)
Subquestions
1-1) Are there new CP-violating phases ?
1-2) Are there new right-handed currents ?
1-3) Are there effects from new Higgs fields?
1-4) Are there new flavor violation ?

Big question 2)

Is there flavor symmetry yet to be discovered ?

Big question 1)

What does the flavor structure of TeV new physics look like ? (How does it taste ?)

Subquestions
1-1) Are there new CP-violating phases ?
1-2) Are there new right-handed currents ?
1-3) Are there effects from new Higgs fields?
1-4) Are there new flavor violation ?

Big question 1)

What does the flavor structure of TeV new physics look like ? (How does it taste ?)

Subquestions
1-1) Are there new CP-violating phases ?
1-2) Are there new right-handed currents ?
1-3) Are there effects from new Higgs fields ?
1-4) Are there new flavor violation ?
1-1) tCPV in $B^{0} \rightarrow \phi K^{0}, \eta^{\prime} K^{0}$, KsKsKs
$1-2)(\mathrm{t}) \mathrm{CPV}$ in $\mathrm{b} \rightarrow \mathrm{s} \gamma$
$1-3) \mathrm{B} \rightarrow \tau \nu, \mu \nu, \mu \mu$, ee, $D \tau \nu$
1-4) $\tau \rightarrow \mu \gamma$

Big question 2)

Is there flavor symmetry yet to be discovered ?
Unitarity triangle with 1\% precision

Near Future (till ~2008)

- Room for some surprise if new physics energy scale is still close to the present limit !
- e.g. 4σ deviation from SM in $\mathrm{b} \rightarrow$ s tCPV
- At least $1 \mathrm{ab}^{-1}$ from each B factory experiment is a MUST.
- In the LHC era (i.e. 2010's), however, obviously needed is a major upgrade for much higher statistics !

At least one Super B factory needed !

Conclusion

- Time-dependent CP violation measurements were, are, and will be,
exciting !

Backup Slides

Time-dependent $C P$ violation (tCPV)

"double-slit experiment" with particles and antiparticles

Quantum interference between two diagrams

tree diagram

box diagram + tree diagram

You need to "wait" (i.e. $\Delta t \neq 0$) to have the box diagram contribution.

Principle of tCPV measurement

1. Fully reconstruct one B-meson which decays to CP eigenstate

Principle of $\mathrm{t} C \mathrm{PV}$ measurement

1. Fully reconstruct one B-meson which decays to $C P$ eigenstate
2. Tag-side determines its flavor (effective efficiency $=30 \%$)
3. Proper time (Δt) is measured from decay-vertex difference ($\Delta \mathrm{z}$)

Q. What is the main source of $C P$ violation ?
A. Kobayashi-Maskawa phase IS the dominant source !

Paradigm shift !

Q. Are there deviations from the CKM picture ? (e.g. new CP-violating phases)

Two promising approaches

1) Overconstrain the unitarity triangle: precise measurements of α and β needed
2) Compare $\sin 2 \beta$ in tree diagram and penguin diagram (e.g. $\mathrm{b} \rightarrow \mathrm{s}$)

tCPV with $\mathrm{B}^{0} \rightarrow \rho^{+} \rho^{-}$?

vector vector

- Even worse on first sight ...
- Dirty final state: $\rho^{+} \rho^{-} \rightarrow \pi^{+} \pi^{0} \pi^{-} \pi^{0}$
- Mixture of $\mathrm{CP}=+1$ and -1 : need to know each fraction

Isospin analysis with $B \rightarrow \rho \rho$

- Branching fraction for $\mathrm{B}^{0} \rightarrow \rho^{+} \rho^{-}$is larger than $\pi^{+} \pi^{-}$
- Branching fraction for $\mathrm{B}^{0} \rightarrow \rho^{0} \rho^{0}$ is small $\left(<1.1 \times 10^{-6}\right)$
- small penguin pollution
- $\sim 100 \%$ longitudinally polarized (\sim pure CP-even state)
- no need for elaborate angular analysis
- No significant 3-body/4-body contamination
- Dirty final states including π^{0}
- OK in the clean $\mathrm{e}^{+} \mathrm{e}^{-}$environment

the best mode as of summer 2005

ϕ_{2} constraints from $\mathrm{B}^{0} \rightarrow \rho^{+} \rho^{-}$decay

CKM Matrix: Enigmatic Hierarchy

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c s} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{l}
\square \square \\
\square \\
\square \\
\square
\end{array}\right)
$$

This is correct, but is very strange !

Flavor symmetry?

Many proposals, not conclusive at the moment. (Observed pattern consistent with many models)

- Ex: Q6 (with SUSY)
- 9 independent parameters to describe 10 observables (6 quark masses + 4 CKM parameters)

FIG. 2: Predictions in the $\left|V_{u b}\right|-\sin 2 \beta\left(\phi_{1}\right)$ plane.

Testable (falsifiable) if sufficient precision obtained ! Precise ϕ_{3} measurements may play an essential role to be free from theory uncertainties

