Time-dependent CP Violation (tCPV) at Belle -- New results at ICHEP2006 ---

Masashi Hazumi (KEK) October. 10, 2006

The Belle (B Factory) Physics Program

I. CP Violation in B Decays

- II. Fundamental SM Parameters (Complex Quark Couplings)
- III. Beyond the SM (BSM)
- **IV. Unanticipated New Particles**

tCPV measurements at the heart of I, II and III !!

tCPV in B⁰ decays

 $(\mathcal{A} = -C \text{ a la BaBar})$

New results shown at ICHEP2006

Still new results but not covered in this talk

Still new results but not covered in this talk

Integrated Luminosity

7

hep-ex/0608039

9

β/ϕ_1 with penguins

Results for 3 theoretically-clean modes φK⁰, η'K⁰, KsKsKs

<u>Δt distribution and asymmetry</u>

• Consistent with the SM (~ 1σ lower) • Consistent with Belle 2005 (Belle2005: " $\sin 2\phi_1$ " = +0.44±0.27±0.05) The most precise measurement now

background subtracted

<u>Δt distribution and asymmetry</u>

- First observation of t*CP*V (5.6σ) in a single $b \rightarrow s$ mode • Consistent with the SM • Consistent with Belle 2005 (Belle 2005: " $\sin 2\phi_1$ " = +0.62±0.12±0.04)
- $\succ \eta' K_s$ and $\eta' K_L$ combined background subtracted
- $\succ \Delta t \rightarrow -\Delta t$ for $\eta' K_L$

More statistics crucial for mode-by-mode studies

Standard penguin (bird), or something else (rabbit may be)?

More statistics crucial for mode-by-mode studies

$b \rightarrow s$ Penguin : Radiative

Signals: well established (BF~SM) \implies New approach for NP $B \rightarrow K_S \pi^0 \gamma \text{ tCPV}$

t*CP*V and $\phi_2(\alpha)$

With the tree diagram only

$$S\pi^{+}\pi^{-} = +\sin 2\phi_{2}$$
$$A\pi^{+}\pi^{-} = 0$$

Decay diagram (tree)

3 possibilities: $\pi\pi$, $\rho\rho$, $\rho\pi$

background subtracted

-0.75-1 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 28

Interpretation: Direct CP violation+SU(3)

The results support the expectation from SU(3) symmetry that

$$A_{CP}(\pi^+\pi^-) \sim -3A_{CP}(K^+\pi^-)$$

N.G. Deshpande and X.-G. He, PRL 75, 1703 (1995) M. Gronau and J.L. Rosner, PLB 595, 339 (2004)

 $A_{CP}(K^+\pi^-) = -0.093 \pm 0.018 \pm 0.008$ (Belle 2006: 4.7 σ)

$$A_{CP}(\pi^{+}\pi^{-}) \sim +0.3$$

ICHEP2006 World Average

$$A_{CP}(\pi^+\pi^-) = +0.39 \pm 0.07$$

$\pi\pi$:tough bananas

- $\mathcal{A}\pi\pi$ world average \rightarrow observation of large direct *CPV*
- Large penguin diagram (P) ~ Tree diagram (T)
- Large strong phase difference between P and T

$$S_{\pi\pi} = \sqrt{1 - A_{\pi\pi}^2} \sin(2\phi_2^{eff}) \qquad \phi_2^{eff} = \phi_2 + \theta$$

Isospin analysis: flavor SU(2) symmetry

- Model-independent (symmetry-dependent) method
- SU(2) breaking effect well below present statistical errors

"Penguin pollution" can be removed by isospin analysis

ϕ_2 constraints from $B^0 \rightarrow \pi^+\pi^-$ decay

Belle 2006: ϕ_2 from $B \rightarrow \rho \pi$ 449M BB Dalitz analysis + isospin (pentagon) analysis

• $26(\text{Dalitz}) + 5(\text{Br}(\rho^{\pm}\pi^{\pm}), \text{Br}(\rho^{+}\pi^{0}), \text{Br}(\rho^{0}\pi^{+}), \mathcal{A}(\rho^{+}\pi^{0}), \text{ and } \mathcal{A}(\rho^{0}\pi^{+}))$

ICHEP2006: BaBar($\pi\pi/\rho\pi/\rho\rho$) + Belle($\pi\pi/\rho\rho$)

$$\alpha/\phi_2 = [93^{+11}_{-9}]^{\circ}$$

consistent with a global fit w/o α/ϕ_2

 $\alpha_{\text{Global Fit}} = [98 + 5] - 19]$

α/ϕ_2 : Discussions

- $\rho\rho$ sets a "window" around 90°
- $\pi\pi$ chooses the correct position inside the window: revival of $\pi\pi$!
- ρπ essential to suppress φ₂ ~ 0° or
 180°
- Good agreement b/w the CKM fit (α determined by others) and the direct measurements
- Still a lot to do

WA $\cdots B \rightarrow \pi\pi$ fitter 1.2 $\cdots B \rightarrow \rho \pi$ Combined $\cdots B \rightarrow oo$ H CKM fit 0.8 С 0.6 0.4 0.2 0 140 0 20 60 80 100 120 160 180

 α (deg)

- solution around 0 or 180°, which requires |P/T|~1, can/should be much more suppressed
- subtleties in statistical analyses with small statistics
- uncertainty in background modeling, unknown phases etc.

CKM Global Fit

Very good overall agreement. O(1) new physics unlikely. Need to be able to detect O(0.1) effects.

Roughly speaking; O(0.1) ~ $(M_{top}/M_{NP})^2$ or ~ (M_{top}/M_{NP}) , therefore a reasonable target if TeV new physics exists.

What's next?

Deeper, more fundamental questions !

General Effective Lagrangian and Flavor Symmetries for Quark Flavor Physics

General Effective Lagrangian and Flavor Symmetries for Quark Flavor Physics

<u>Big question 2</u>

Is there flavor symmetry yet to be discovered ?

Big question 1)

What does the flavor structure of TeV new physics look like ? (How does it taste ?)

Subquestions

1-1) Are there new CP-violating phases ?

- **1-2) Are there new right-handed currents ?**
- **1-3**) Are there effects from new Higgs fields ?
- **1-4) Are there new flavor violation ?**

Big question 1)

What does the flavor structure of TeV new physics look like ? (How does it taste ?)

Subquestions

- **1-1) Are there new CP-violating phases ?**
- **1-2) Are there new right-handed currents ?**
- **1-3) Are there effects from new Higgs fields ?**

1-4) Are there new flavor violation ?

1-1) tCPV in $B^0 \rightarrow \phi K^0$, $\eta' K^0$, KsKsKs 1-2) (t)CPV in $b \rightarrow s\gamma$ 1-3) $B \rightarrow \tau v$, μv , $\mu \mu$, ee, $D\tau v$ 1-4) $\tau \rightarrow \mu \gamma$

Big question 2)

Is there flavor symmetry yet to be discovered ?

Unitarity triangle with 1% precision

Near Future (till ~2008)

- Room for some surprise if new physics energy scale is still close to the present limit !
 - e.g. 4σ deviation from SM in b \rightarrow s tCPV
 - At least 1 ab⁻¹ from each B factory experiment is a MUST.
- In the LHC era (i.e. 2010's), however, obviously needed is a major upgrade for much higher statistics !

At least one Super *B* factory needed !

Conclusion

• Time-dependent CP violation measurements were, are, and will be,

exciting !

Backup Slides

Time-dependent *CP* violation (t*CPV*) "double-slit experiment" with particles and antiparticles

Quantum interference between two diagrams

You need to "wait" (i.e. $\Delta t \neq 0$) to have the box diagram contribution.

Principle of tCPV measurement

1. Fully reconstruct one B-meson which decays to CP eigenstate

Principle of tCPV measurement

- 1. Fully reconstruct one B-meson which decays to CP eigenstate
- 2. Tag-side determines its flavor (effective efficiency = 30%)
- 3. Proper time (Δt) is measured from decay-vertex difference (Δz)

Two promising approaches

1) Overconstrain the unitarity triangle: precise measurements of α and β needed

2) Compare $\sin 2\beta$ in tree diagram and penguin diagram (e.g. b \rightarrow s)

t*CPV* with $B^0 \rightarrow \rho^+ \rho^-$?

- Even worse on first sight ...
 - Dirty final state: $\rho^+\rho^- \rightarrow \pi^+\pi^0\pi^-\pi^0$
 - Mixture of CP = +1 and -1: need to know each fraction

Isospin analysis with $B \rightarrow \rho \rho$

- Branching fraction for $B^0 \rightarrow \rho^+ \rho^-$ is larger than $\pi^+ \pi^-$
- Branching fraction for $B^0 \rightarrow \rho^0 \rho^0$ is small (<1.1x10⁻⁶)
 - small penguin pollution
- ~100% longitudinally polarized (~pure *CP*-even state)
 - no need for elaborate angular analysis
- No significant 3-body/4-body contamination
- Dirty final states including π^0
 - OK in the clean e^+e^- environment

the best mode as of summer 2005

ϕ_2 constraints from $B^0 \rightarrow \rho^+ \rho^-$ decay

CKM Matrix: Enigmatic Hierarchy

This is correct, but is very strange !

Flavor symmetry ?

Many proposals, not conclusive at the moment. (Observed pattern consistent with many models)

- Ex: Q6 (with SUSY)
 - 9 independent parameters to describe 10 observables (6 quark masses + 4 CKM parameters)

FIG. 2: Predictions in the $|V_{ub}| - \sin 2\beta(\phi_1)$ plane.

Testable (falsifiable) if sufficient precision obtained ! Precise ϕ_3 measurements may play an essential role to be free from theory uncertainties