$\bar{B} \rightarrow X_{s} \gamma$ at NNLO
 Mikołaj Misiak

 (CERN \& Warsaw University)

 (CERN \& Warsaw University)}

In collaboration with: H.M. Asatrian, K. Bieri, M. Czakon, A. Czarnecki, T. Ewerth, A. Ferroglia, P. Gambino, M. Gorbahn, C. Greub, U. Haisch, A. Hovhannisyan, T. Hurth, A. Mitov, V. Poghosyan, M. Ślusarczyk and M. Steinhauser.

hep-ph/0609232

The weak radiative \bar{B}-meson decay branching ratio:

$$
\begin{aligned}
& \mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left[\frac{\Gamma(b \rightarrow s \gamma)}{\Gamma(b \rightarrow c e \bar{\nu})}\right]_{\mathrm{LO} \mathrm{EW}} f\left(\frac{\alpha_{s}\left(M_{W}\right)}{\alpha_{s}\left(m_{b}\right)}\right) \times \\
& \times \underset{\text { NLO }}{\left.1+\underset{\text { NNLO }}{\mathcal{O}\left(\alpha_{s}\right)}+\underset{\mathcal{O}}{\mathcal{O}\left(\alpha_{s}^{2}\right)}+\mathcal{O}\left(\alpha_{\mathrm{em}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{c}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda}{m_{b}} \alpha_{s}\right)\right\}} \\
& \underbrace{\sim 30 \% \sim 4 \%}_{\text {perturbative corrections }} \underbrace{\sim 1 \%}_{\text {non-perturbative corrections }} \sim 5 \% \\
& \text { (methods: Optical Theorem, } \\
& \text { Operator Product Expansion, } \\
& \text { Heavy Quark Effective Theory) }
\end{aligned}
$$

The current experimental world average:
(HFAG, hep-ex/0603003)

$$
\left(3.55 \pm 0.24_{-0.10}^{+0.09} \pm 0.03\right) \times 10^{-4}
$$

Combined error: $\simeq 7.4 \% \Rightarrow$ need for the NNLO.

Sample LO EW diagrams:

LO QCD effects that originate from two-loop diagrams like this enhance the $\bar{B} \longrightarrow X_{s} \gamma$ rate by more than a factor of 2. The function $f\left(\alpha_{s}\left(M_{W}\right) / \alpha_{s}\left(m_{b}\right)\right)$ arises from resummation of $\left(\alpha_{s} \ln M_{W}^{2} / m_{b}^{2}\right)^{n} \quad$ using

Two loops at the LO the renormalization group techniques.

Resummation of $\left(\alpha_{s} \ln M_{W}^{2} / m_{b}^{2}\right)^{n} \quad$ is most conveniently performed in the framework of an effective theory that arises from the SM after decoupling of the heavy electroweak bosons and the top quark. The Lagrangian of such a theory reads:

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{8} C_{i}(\mu) O_{i}+\left(\begin{array}{c}
\begin{array}{c}
\text { higher-dimensional, } \\
\text { on-shell vanishing, } \\
\text { evanescent }
\end{array}
\end{array}\right) . \\
& O_{1,2}=\stackrel{\stackrel{\mathrm{c}}{\mathrm{~b}} / \mathrm{c}_{\mathrm{s}}^{\mathrm{c}}}{ }=\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right), \quad \text { from } \stackrel{\mathrm{c}}{\mathrm{~b}} \mathrm{w} \cdot{ }^{\mathrm{c}}, \quad\left|C_{i}\left(m_{b}\right)\right| \sim 1 \\
& O_{3,4,5,6}=\stackrel{\stackrel{\mathrm{q}}{\mathrm{~b}}<\frac{\mathrm{q}}{\mathrm{~s}}}{ }=\left(\bar{s} \Gamma_{i} b\right) \sum_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right), \quad\left|C_{i}\left(m_{b}\right)\right|<0.07 \\
& O_{7}=\underline{\mathrm{b}}\left\{_{\mathrm{s}}^{\gamma}=\frac{e m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} b_{R} F_{\mu \nu},\right. \\
& O_{8}=\underbrace{\mathrm{b}^{\mathrm{g}}} \mathrm{~s}=\frac{g m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R} G_{\mu \nu}^{a}, \\
& C_{7}\left(m_{b}\right) \simeq-0.3 \\
& C_{8}\left(m_{b}\right) \simeq-0.15
\end{aligned}
$$

Three steps of the calculation:
Matching: Evaluating $C_{i}\left(\mu_{0}\right)$ at $\mu_{0} \sim M_{W}$ by requiring equality of the SM and the effective theory Green functions.
Mixing: Deriving the effective theory Renormalization Group Equations $\quad\left(C_{j}^{\text {bare }}=C_{i} Z_{i j}\right)$ and evolving $C_{i}(\mu)$ from μ_{0} to $\mu_{b} \sim m_{b}$.
Matrix elements: Evaluating the on-shell amplitudes at $\mu_{b} \sim m_{b}$.

Contributions to the NNLO analysis:

Three-loop matching for O_{7} and O_{8} :
M. Steinhauser, MM, NPB 683 (2004) 277, hep-ph/0401041

Three-loop mixing in the $\left(O_{1}, \ldots, O_{6}\right)$ and $\left(O_{7}, O_{8}\right)$ sectors:

M. Gorbahn, U. Haisch, NPB 713 (2005) 291, hep-ph/0411071
M. Gorbahn, U. Haisch, MM, PRL 95 (2005) 102004, hep-ph/0504194

Four-loop mixing $\left(O_{1}, \ldots, O_{6}\right) \longrightarrow\left(O_{7}, O_{8}\right)$:
M. Czakon, U. Haisch, MM: O_{7} finished, O_{8} in progress.

Two-loop matrix elements of O_{7} and O_{8} (and bremsstrahlung):
K. Bieri, C. Greub, M. Steinhauser, PRD 67 (2003) 114019, hep-ph/0302051 (large β_{0})
I. Blokland, A. Czarnecki, MM, M. Ślusarczyk, F. Tkachov, PRD 72 (2005) 033014, hep-ph/0506055
H.M. Asatrian, T. Ewerth, C. Greub, T. Hurth, A. Hovhannisyan, V. Poghosyan,
K. Melnikov, A. Mitov, PLB 620 (2005) 69, hep-ph/0505097
H.M. Asatrian, T. Ewerth, A. Ferroglia, P. Gambino, C. Greub, hep-ph/0607316

Three-loop matrix elements of O_{1} and O_{2} (and bremsstrahlung):
K. Bieri, C. Greub, M. Steinhauser, PRD 67 (2003) 114019, hep-ph/0302051 (large β_{0})
M. Steinhauser, MM, hep-ph/0609241 (interpolation in m_{c})

Perturbative expansion of the Wilson coefficients:
$C_{i}(\mu)=C_{i}^{(0)}(\mu)+\frac{\alpha_{s}(\mu)}{4 \pi} C_{i}^{(1)}(\mu)+\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{2} C_{i}^{(2)}(\mu)+\ldots$

Branching ratio:

$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi C}\left[\underset{\text { pert. }}{P\left(E_{0}\right)}+\underset{\text { non-pert. }}{\left.N\left(E_{0}\right)\right]}\right.$
$\frac{\Gamma\left[b \rightarrow X_{s} \gamma\right]_{\gamma \gamma}>E_{0}}{\left|V_{c b} / V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} P\left(E_{0}\right), \quad C=\left|\frac{V_{u b}}{V_{c b}}\right|^{2} \frac{\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}\right]}{\Gamma\left[\bar{B} \rightarrow X_{u} e \bar{\nu}\right]}$
Perturbative expansion of $P\left(E_{0}\right)$:
$P=P^{(0)}+\frac{\alpha_{s}}{4 \pi}\left(P_{1}^{(1)}+P_{2}^{(1)}(r)\right)+\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{2}\left(P_{1}^{(2)}+P_{2}^{(2)}(r)+P_{3}^{(2)}(r)\right)$
$P_{1}^{(1)}, P_{3}^{(2)} \sim C_{i}^{(0)} C_{j}^{(1)}, \quad P_{2}^{(1)}, P_{2}^{(2)} \sim C_{i}^{(0)} C_{j}^{(0)}, \quad P_{1}^{(2)} \sim\left(C_{i}^{(0)} C_{j}^{(2)}, C_{i}^{(1)} C_{j}^{(1)}\right)$
Moreover: $\quad P_{2}^{(2)}=A n_{f}+B=-\frac{3}{2}\left(11-2 / 3 n_{f}\right) A+\frac{33}{2} A+B=P_{2}^{(2) \beta_{0}}+P_{2}^{(2) \mathrm{rem}}$

The complete $P_{2}^{(2)}$ has been calculated only for $r \gg \frac{1}{2}$.

The NNLO corrections $P_{k}^{(2)}$ as functions of $\quad r=m_{c}\left(m_{c}\right) / m_{b}^{1 S}$

Dotted: exact,

Dashed: leading large- Υ asymptotics.

Interpolation:
$P_{2}^{(2) \mathrm{rem}}(r)=x_{1}+x_{2} P_{2}^{(1)}(r)+x_{3} r \frac{d}{d r} P_{2}^{(1)}(r)+x_{4} P_{2}^{(2) \beta_{0}}(r)+x_{5}\left|A_{\mathrm{NLO}}(r)\right|^{2}$
The coefficients x_{k} are determined from the asymptotic behaviour at large r and from the requirement that either
(a) $P_{2}^{(2) \mathrm{rem}}(0)=0$,
or $\quad(\mathrm{b}) \quad P_{1}^{(2)}+P_{2}^{(2) \mathrm{rem}}(0)+P_{3}^{(2)}(0)=0$,
or $\quad(\mathrm{c}) \quad P_{2}^{(2) \mathrm{rem}}(0)=\left[P_{2}^{(2) \mathrm{rem}}(0)\right]_{77}$.
The average of (a) and (b) is chosen to determine the central value of the NNLO branching ratio. The difference between these two cases is used to estimate the interpolation ambiguity.

Renormalization scale dependence of $\mathcal{B}\left(\bar{B} \rightarrow X_{S} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}$

"Central" values:

$$
\begin{aligned}
\mu_{0} & =160 \mathrm{GeV} \\
\mu_{b} & =2.5 \mathbf{G e V} \\
\mu_{c} & =1.5 \mathbf{G e V}
\end{aligned}
$$

Final result of the current analysis:

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{NNLO}}=(3.15 \pm 0.23) \times 10^{-4}
$$

Contributions to the total uncertainty:

5% non-perturbative $\mathcal{O}\left(\alpha_{s} \frac{\Lambda}{m_{b}}\right)$
$\Rightarrow \quad$ Dedicated analysis necessary (see Lee, Neubert, Paz, hep-ph/0609224)
3% parametric $\left(\alpha_{s}\left(M_{Z}\right), \mathcal{B}_{\text {semileptonic }}^{\text {exp }}, m_{c}, \ldots\right)$ $2.0 \% \quad 1.6 \% \quad 1.1 \%$
$3 \% m_{c}$-interpolation ambiguity
3% higher order $\mathcal{O}\left(\alpha_{s}^{3}\right)$
\Rightarrow Complete three-loop on-shell matrix element calculation even for $m_{c}=0$ would help a lot.
$\Rightarrow \quad$ This uncertainty will stay with us.

NNLO SM Prediction

$3.15 \pm 0.23 \times 10^{-4}$

CLEO Phys. Rev. Lett. 87, 251807 (2001)
BELLE Phys.Lett. B 511, 151 (2001)
BELLE Phys.Rev.Lett.93:061803,2004
BABAR PRD 72, 052004 (2005)
BABAR hep-ex / 0507001

HFAG has combined experimental results with different photon energy cuts:

Since additional non-perturbative effects arise for high photon energy cuts E_{0}, combination of the three results and extrapolation to $E_{0}=1.6 \mathrm{GeV}$ are performed in the same step, to minimize model-dependence.

The cutoff-related effects die out for $E_{0} \lesssim 1.6 \mathrm{GeV}$ [A. Kagan, M. Neubert, Eur. Phys. J. C7 (1999) 5].

Very recently, a $\sim-3 \%$ cutoff-related effect was announced for $E_{0}=1.6 \mathrm{GeV}$
[T. Becher, M. Neubert, hep-ph/0610067].
This effect is not included here.

Constraints on the charged Higgs boson mass in the Two-Higgs-Doublet Model II:

$$
M_{H^{+}}>295 \mathrm{GeV} @ 95 \% \text { C.L. }
$$

Constraints on dimension-four anomalous $W \bar{t} b$ couplings:

$$
\mathcal{L}_{4}=-\frac{g}{\sqrt{2}}\left[\left(V_{t b}+f_{1}^{L}\right)\left(\bar{t}_{L} \gamma^{\mu} b_{L}\right)+f_{1}^{R}\left(\bar{t}_{R} \gamma^{\mu} b_{R}\right)\right] W_{\mu}^{+}+\text {h.c. }
$$

\Rightarrow Bounds on f_{1}^{L} and f_{1}^{R} are of order 10^{-1} and 10^{-3}, respectively.

Summary and Outlook

- The accuracy of the experimental world average for $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ is already a little better than the accuracy of the SM prediction at the NLO in QCD. Including the NNLO QCD corrections reverses the situation.
- The 3-loop matrix elements are found using an interpolation in m_{c}. The interpolation relies on the assumption that the large- β_{0} approximation is accurate in the $m_{c} \rightarrow 0$ limit. A verification of this assumption by an explicit calculation would be more than welcome.
- It is essential to perform a dedicated study of non-perturbative corrections to the matrix elements of Q_{1} and Q_{2} that arise at $\mathcal{O}\left(\alpha_{s}\right)$, and scale like Λ / m_{b} in the $m_{c} \rightarrow 0$ limit. In the opposite limit ($m_{c}>m_{b} / 2$), they scale like Λ^{2} / m_{b}^{2} and can be neglected.
- Constraints on the charged Higgs boson mass and on the anomalous top quark couplings remain very stringent.

