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I am very sorry that I was not able to deliver this talk.  
My grandmother has passed away a few hours ago 
and I must return to the United States.

Sunday, October 8, 11:30pm
Neil Shafer-Ray

To all,
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CP
(time reversal) violation

K-zero-long decay

http://www.bnl.gov/bnlweb/history/nobel/nobel_80.asp
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A completely different place to look for CP violationA completely different place to look for CP violation
is in the interaction of fundamental particles with external is in the interaction of fundamental particles with external 

fields.fields.
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The study of the magnetic moment of the electronThe study of the magnetic moment of the electron
is an integral part of some of the mostis an integral part of some of the most

compelling experiments of the last 100 years.compelling experiments of the last 100 years.
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An EDM proportional to spin would also give CPAn EDM proportional to spin would also give CP

g = 2.0023193043617(16)
Gabrielse,PRL 2006

gedm = 0.00000000000000000(5)
Commins, PRL, 2004

GHz/ 39962458.1
)(

μμ
μ

=
⋅+⋅=

B

edmB SEgSBgU
rrrr

cme1093080.1 11 ⋅×= −



The University of Oklahoma

S
up

er
 S

ym
.

S
td

. M
od

.

(H
oo

ge
ve

en
 1

99
0)

(A
rn

ow
itt

20
01

)

- Commins & coworkers, Tl, PRL, 2002

- Hinds & coworkers, YbF, DAMOP, 2005

An EDM proportional to spin would also give CPAn EDM proportional to spin would also give CP
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I. Introduction

What is the OU group up to?

How was the current experimental limit on the
magnitude of the e-EDM obtained?

OutlineOutlineOutline

What are some of the current experiments being
carried out to measure the e-edm
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To search for an 
e-EDM we will 
look for

ΔU=U+M –U-M 
in a strong E field.  

Symmetry leads to a  ±M degeneracy of any molecule or atom that is 
not broken by an electric field along the quantization axis.

The existence of an electron electric dipole moment would break this 
symmetry.

How the current limit on electron EDM is knownHow the current limit on electron EDM is known

Precision structure
calculations are
not necessary.

Major Difficulty:
A background
magnetic field 
mimics an EDM.
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The The ComminsCommins Experiment withExperiment with
22PP1/2 1/2 (F=1, M=(F=1, M=±±1) 1) TlTl

.)( zz
sys
edmzz

sys
zB FEgFBgU +≈ μ

For an atom or molecule in a strong electric field, 

)( SEgSBgU edmB

rrrr
⋅+⋅= μ

For an isolated electron,

edm
sys
edm gg << for light atoms/molecules  (Schiff's theorem.)

0=sys
edmg for diamagnetic atoms

edm
sys
edm gg >> for relativistic (heavy atoms/molecules.)

We want to use heavy paramagnetic atoms or molecues.
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Tl(2P1/2 F=1), incoherent combination of
|1,1>, |1,0> and |1,-1> states

P(θ,φ) = probability
of finding the system
In the state M=F when
quantization axis is
in the direction of θ,φ.E

LASER RADIATION

Tl(2P1/2 F=1), 
|1,1> + |1,-1>

Graphical Description of the Graphical Description of the ComminsCommins ee--EDM ExperimentEDM Experiment
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EFFECT OF MAGNETIC FIELDS ON
THE DISTRIBUTION OF ANGULAR MOMENTUM

Tl(2P1/2 F=1), 
|1,1> + Exp[i ΔU t /h]  |1,-1>

B
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Bx

A small constant field Bx along an axis perpendicular to B
has little effect.

B

EFFECT OF MAGNETIC FIELDS ON
THE DISTRIBUTION OF ANGULAR MOMENTUM
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B

A small field Bx along an axis perpendicular to B
that rotates with the distribution may have a dramatic effect.

EFFECT OF MAGNETIC FIELDS ON
THE DISTRIBUTION OF ANGULAR MOMENTUM

Brot
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EFFECT OF A MAGNETIC FIELD ON
OF ANGULAR MOMENTUM ORIENTATION

B

A small field Bx along an axis perpendicular to B
that rotates with the distribution may have a dramatic effect.

The Ramsey beam resonance technique takes advantage of this dependence
of the Rabi rotation on the phase of the rotating field.
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The Commins experiment
Commins et al, PRL 88, 71805, 2002 

ω= ΔU/h
=ωRF

LASER LASER



The Commins experiment
Commins et al, PRL 88, 71805, 2002 

ω= ΔU/h
≠ωRF

B

LASER
LASER
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The Commins experiment
Commins et al, PRL 88, 71805, 2002 

LASER

ω= ΔU/h
=ωRF(+)

LASER



LASER

B

ω= ΔU/h
=ωRF(-)

E

The Commins experiment
Commins et al, PRL 88, 71805, 2002 

LASER
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SHIFT GIVES EDM

SHIFT SHOWN TO BE ~  10-7 OF THE WIDTH!!!
GREAT STATISTICS!
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limiting systematic error
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Measurement of the  eMeasurement of the  e--EDM using paramagnetic moleculesEDM using paramagnetic molecules

0.024Tl
(2P1/2 F=1)

System
(state)

E-field
(kV/cm)

split @
10-27e cm

(mHz)

B @
10-27e cm

(nG)

0.02100

tcoherence
(ms)

3

YbF
(X2Σ,F=1)

10. 13 5 3

dlimit
(10-27e cm)

1.3

-
Hind

s
Commins

1) Effective electric field is the internal field of the molecule.
2) Idea by Saunders (Atomic Phys, 14 1975,71).
3) Calculation of shift by N.S. Mosyagin, M.G. Kozlov, A.V. Titov, 

(J Phys B, 31, L763)
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Effect of the large tensor
split (energy dependence on |M|)
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Effect of the large tensor
split (energy dependence on |M|)

B
r

downE
r

θ
Only the projection of B on the E axis
contributes to the energy between ±M levels:upE

r

Δθ

θθ
θθ

Δ≈

Δ=−
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,,

10
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sin2

Gauss
BHz

BBB downzupz

A much less severe problem
then the vxE/c2 effect.
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Easy to lose in statistics what one gains in 
intrinsic sensitivity.

Beam Expected Flux Speed Distribution

Tl(F=1,|M|=1) 8 × 1015/str/sec

YbF(J=1/2, F=1,|M|=1)
6 × 1010/str/sec

0 400 800 v(m/s)

(from oven)

(from supersonic
expansion)

0 400 800 v(m/s)

Differences between an atomic beam and a beam of Differences between an atomic beam and a beam of 
paramagnetic moleculesparamagnetic molecules
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0.024Tl
(2P1/2 F=1)

System
(state)

E-field
(kV/cm)

shift @
10-27e cm

(mHz)

B @
10-27e cm

(nG)

0.02100

tcoherence
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Hinds
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(2P1/2 F=3)

0.000254 0.00016 15 60Hunter

(DeMille)

Commins

-PbF
(X2Π1/2, F=1)

60-100 12 500 to 107 103 to 3
(Shafer-

Ray)

(Weiss)

(Gould)

HfF+
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(Cornell) ~10 ~200 ~103~1 volt RF
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100?
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(Hinds)
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Cs Atomic Fountain (Provided by Harvey Gould)Cs Atomic Fountain (Provided by Harvey Gould)
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The OU PbF edm experiment
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g factor of PbF F=1, |Mg factor of PbF F=1, |MFF|=1, high|=1, high--fieldfield--seeking ground state:seeking ground state:

g-factor can be 
tuned to zero!

11.0)3/2(2
1 −≈−≈ ⊥Gg

017.0)( ||2
1 ≈≈ Gg

Shafer-Ray, PRA,73, 34102
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PbF molecular 
beam source

optical polarization
(create M=0 state) high-field region
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Schematic of PbF g=0 measurementSchematic of PbF g=0 measurement

LIF or REMPI 
detection region

(probe M=0 state)
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PbF molecular 
beam source

optical polarization
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First things first:  Production and detection of PbFFirst things first:  Production and detection of PbF

Pb / F2 flow reactor:  Operational Temperature 1200K

Pb +MgF2 reactor:  Operational Temperature 1200K

Pb +PbF2 reactor:  Operational Temperature 1200K
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PbF molecular 
beam source

optical polarization
(create M=0 state) high-field region
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Schematic of PbF g=0 measurementSchematic of PbF g=0 measurement

REMPI detection 
region

(probe M=0 state)
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Current Apparatus for Exploring Current Apparatus for Exploring PbFPbF SpectroscopySpectroscopy

Nd:YAG 10ns, 10Hz
tunable dye laser

0.1 cm-1 resolutiontunable dye laser
0.1 cm-1 resolution

PbF Source Chamber
ionization chamber

detection chamber

Not an ideal detection scheme:
PbF molecules stay 
in probe region ~5μs

Time between laser shots: 100ms
Duty cycle:    1/(20,000)
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PbF Source Chamber
ionization chamber
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Current Apparatus for Exploring Current Apparatus for Exploring PbFPbF SpectroscopySpectroscopy
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PbF Source Chamber
ionization chamber
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Current Apparatus for Exploring Current Apparatus for Exploring PbFPbF SpectroscopySpectroscopy



The University of Oklahoma

(0,0) band

5.0

4.0

0.0

-2.0

-1.0

-3.0

3.0

2.0

1.0

en
er

gy
 (e

V
)

X2Π1/2

A2Σ1/2

B2Σ1/2

PbF+

3.0 5.0 7.0
R(Bohr)

1+1   X1+1   X11
22ΠΠ1/21/2 →→BB22ΣΣ1/21/2 REMPI of PbFREMPI of PbF

OU data, 2005

McRaven, Poopalasingam, Shafer-Ray,
Chemical Physics Letters, In Progress.

355-397nm

280 nm
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Observation of an ionization threshold for PbFObservation of an ionization threshold for PbF

McRaven, Poopalasingam, Shafer-Ray,
Chemical Physics Letters, In Progress.

I.P. 7.55eV



The University of Oklahoma

R(Bohr)
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E' 4Σ3/2?

PbF+

3.0 5.0 7.0

State selective ionization of PbF+ via 1+1+1 doubly-resonant multi-photon
ionization.

X2Π1/2

A2Σ1/2

λ (A→E') / nm442.4 440.8

λ 
(X
→

A)
 / 

nm

436.612

436.320

WE HAVE DISCOVERED 
A NEW ELECTRONIC

STATE OF PbF
(tentative assignment: E'4Σ3/2)
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SIMULATION EXPERIMENT

Double Resonant Ionization of PbF
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R2-R21
JX1 1/2 3/2 5/2 7/2

3/2

P1-R21

R2-Q1

1/2 3/2 5/2

9/2

R2-P21
3/2 5/2

A→E' photon energy (cm-1)

We have used our
0.1cm-1 lasers to

almost isolate
the J=1/2 state!

(Impossible with 1 resonant step.)

We now have a blue
diode laser and 
will start scanning
with 10 MHz resolution
in the next few weeks

We have yet to
rotationally cool.
(Bigger pumps 

await promised DOE
money.  Program in

limbo until
Congress approves

the Energy and Water
appropriations bill.)
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Saturation  of X->A transition in high J, X->A->E' ionization 
(probe  laser power at 0.12  fluence J/cm^2 )
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fluence of X→A laser radiaion (mJ/cm2)

~40mJ/cm2 of 0.1cm-1 light to saturate
X→A

ionization step at 437nm.  A-state lifetime 3μS

X→A transition may be saturatuated
with ~15mW/mm2 diode laser radiation
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Saturation  of E'->A transition in high J, X->A->E'   ionization 
(pump  laser power a 42.6 fluence mJ/cm2 ) 
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radiation driving
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E'→PbF+

ionization step
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A→E' step saturated

12J/cm2 to saturate
A→E'→PbF+

ionization step at
441nm.

E' lifetime <5ns
can not be ionized with cw laser radiation
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TIMING FOR OPTIMIZED PbF DETECTION

0 2usec

437nm X→A diode laser radiation. 

6usec

10mW/mm2 cw

442nm A→E'→PbF+ pulse laser radiation 10 mJ/mm2, 10-100ns

208PbF ion signal

100-1000Hz
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Current set up.
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Improvement over current spectra:

OPTIMIZED DETECTION OF PbF
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Requirements for large Rabi population
amplitude in Raman pumping

from a state A to a state B

(1) Δω of lasers on resonance.

ω ω+Δω
A B

C

(2) At least 1 state C that couples to both A and B.
(3) A finely tuned ratio of A-C to B-C coupling.
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γ = 0γ = π/2
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Using Ramsey fringes to lock the electric field: Using Ramsey fringes to lock the electric field: 
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A totally different idea: Guided A totally different idea: Guided PbFPbF molecules in a Coaxial cable molecules in a Coaxial cable 
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or

polarizatiing laser
radiation

Raman-RF

LIF image

θEDM

1 to 100 meters

Disadvantages:
Must use LIF detection
g=0.017 (not zero)

Advantage:
long (~1second) coherence time
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Conclusions
• We have found a system for which the 

effect of background magnetic fields may 
be suppressed by seven orders of 
magnitude.

• We have developed a source of PbF as 
well as sensitive state selective REMPI of 
the molecule. 

• We are designing a beam machine to take 
advantage of this new system.
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