Search for Fourth Family Quarks at ATLAS

E. Özcan, S. Sultansoy, G. Ünel University College London, Gazi University, Ankara, CERN & University of California, Irvine

Flavour in the era of LHC workshop Oct 9-11, 2006, CERN

Motivation: Yukawa Couplings in SM

 Masses of fermions introduced by couplings to Higgs field:

 $m_f = g_f \eta$ ($\eta = \langle H \rangle \approx 245 \text{ GeV}$)

• Couplings vary by orders of magnitude:

- Even among same type fermions:

$$g_t / g_u \approx 35000 \div 175000$$

 $g_b / g_d \approx 300 \div 1500$ $g_\tau / g_e \approx 3500$
- Or within 3rd family:
 $g_t / g_b \approx 40 g_t / g_\tau \approx 100$ $g_t / g_{v\tau} > 10000$

• Three-family case not particularly natural.

Flavor Democracy

- Before spontaneous symmetry breaking, all fermions are massless. Fermions with same quantum numbers are indistinguishable.
- No reason why Yukawa couplings for fermions of a given type should be different.

$$a_{ij}^d \cong a^d, \ a_{ij}^u \cong a^u, \ a_{ij}^l \cong a^l, \ a_{ij}^{V} \cong a^{V}.$$

=> For each type of fermion (f = u, d, l, v), (n-1) massless particles and a single massive particle with m = $n \cdot a^{f} \cdot \eta / \sqrt{2}$.

Flavor Democracy II

 With a single Higgs doublet responsible for all the masses, assume couplings for different types of fermions are comparable to each other and lies somewhere between the other couplings of EW unification:

$$a^{d} \approx a^{u} \approx a^{l} \approx a^{v} \approx a$$
$$e = g_{w} \sin \theta_{w} < \frac{a}{\sqrt{2}} < g_{z} = \frac{g_{w}}{\cos \theta_{w}}$$

With these assumptions, flavor democracy predicts a fourth family with quasi-degenerate up-type u₄ and down-type d₄ quarks in the mass range ~300 to ~700 GeV (Ciftci, Ciftci, Sultansoy, PRD 72, 053006, 2005). This range is consistent with partial-wave unitarity at high energies.

Event Generation

- 12k signal events each generated for three choices of mass 250, 500, 750 GeV. (CompHEP v4.4.3) $pp \rightarrow d_4 d_4 \rightarrow W^+ W^- jj \quad , \quad j = u, c$
- Assume that mixing is predominantly to light (1st & 2nd) generations. Taking into account the current limits on the mixing parameters:

 $|V_{ud_4}| < 0.004$ $|V_{cd_4}| < 0.044$ $|V_{u_4d}| < 0.08$ $|V_{u_4s}| < 0.11$

A common mixing parameter of 0.001 is chosen for event generation (relative magnitudes not important).

M _{d4} (GeV)	250	500	750
Г (MeV)	0.01	0.08	0.28
σ (pb)	99.8	2.59	0.25

Event Generation II

 SM background events generated with MadGraph (v3.95). For |η_{jet}|<2.5, ΔR_{jj}>0.4, P_T^{jet}>20GeV, the cross-sections are: pp > w+w-bb~ σ~612 pb pp > w+w-jj (j=u,d,s,c) σ~24 pb

(Backgrounds with same-charge Ws negligible: σ <1pb.)

- All ntuples produced with ATLAS fast simulation ATLfast interfaced to Pythia in ATLAS framework, Athena release 11.0.4.1.
- CTEQ6L1 set of pdfs used.

Event Reconstruction

- Reconstruct one leptonic W:
 - Require exactly one lepton. P_T >15 GeV
 - Use missing E_T to reconstruct neutrino.

- Reconstruct one hadronic W:
 - Take 3rd and 4th
 most-energetic jets
 - Reject if
 m_{jj}>200GeV.

Oct. 11, 2006

Event Reconstruction II

• Reconstruct q_4 :

Background Rejection

- ATLfastB results for jet-tagging used. Reject if either of hard jets is b-tagged. ~40% reduction in background, with insignificant loss in signal.
- Scalar sum of all transverse momenta:

$$H_T \equiv \sum_{jet=1}^4 P_T^{jet} + P_T^{lept} + P_T^{miss}$$

- Reject events if
$$H_T < H_T^{min}$$
 with $H_T^{min} = 350$ GeV chosen for 250GeV signal.

H_T^{min} can be increased for scans of higher-mass signals.

Oct. 11, 2006

Results

With 1fb⁻¹ of data:

Oct. 11, 2006

Results II

With **10fb**⁻¹ of data:

- For m_{q4}=750 GeV, a clear signal peak can be seen over the background.
- However, due to limited statistics of our WWbb sample, there are other peaks in the final histogram.

Conclusions

- 4th family interactions modeled in CompHEP and signal and SM background Monte Carlo generated.
- First pass on the reconstruction and background rejection shows encouraging results for low-mid m_{α4}:
 - Top pair production will be the main background for 250 GeV, but even with very low integrated luminosity, thousands of events will be reconstructed, leaving way for further improvements.
 - For 500 GeV, the background is mostly flat continuum, but a clear peak observed with only 1fb⁻¹ of data.
- For the higher m_{q4}, to draw concrete conclusions more MC statistics for the SM background will be needed.
- No optimizations yet performed on any of the selection criteria.

Oct. 11, 2006

Future Steps

- In the short term:
 - Generate larger background samples with higher P_T hard jets.
 - Also look for background from W+W-jjj & W+W-bbj events.
 - Optimize selection criteria.
 - Explore smarter selection for hadronic W jets.
 - Determine minimum integrated luminosity necessary for 3σ and 5σ observation, as a function of q_4 mass.
- In the longer term:
 - Explore reconstruction for events with both Ws decaying leptonically.
 - Study how the signal would be distinguished from other models.

Backup Slides

Possible?

Precision EW data consistent with fourth generation (which has a heavy neutrino).

Example exclusion plot from Novikov, Okun, Rozanov, Vysotsky, PLB 529, 2002, for:

> M_{d4} = 200 GeV M_{u4} = 220 GeV M_{e4} = 100 GeV

Oct. 11, 2006

Selection Efficiencies (%)

	sig@250	WWjj	WWbb
Single lepton	34.5	30.9	36.3
4 jets	94.6	92.2	92.3
P _T ^{lept} >15GeV	91.3	90.3	89.8
m _{ii} <200 GeV	75.7	79.3	83.5
Hard jets tag≠b P _T >30GeV	96.3	85.9	48.1
h>350GeV	95.0	67.9	64.9
∆m<100GeV	66.1	55.0	63.1