

$B \rightarrow K^* \ell^+ \ell^-$ and $B \rightarrow \tau \nu$ at Belle

Stefano Villa, EPFL

Flavour in the Era of the LHC - 4th meeting CERN, October 9-11, 2006

Summary

- *B* physics at Belle
- The $B \to K^* \ell^+ \ell^-$ channel
 - forward-backward asymmetry
 - measurement of Wilson coefficients
 - future prospects
- Evidence for $B \rightarrow \tau v_{\tau}$
 - description of the measurement
 - constraints on charged Higgs
 - future prospects
- Conclusions

B physics at Belle

Super-Cond. Solenoid

CsI calorimeter (ECL)

Aerogel Cherenkov

Counter

Central Drift Chamber

Time Of Flight counter

<u>B production</u>

BB pairs produced at KEKB in e^+e^- (3.5 GeV on 8 GeV) collisions at the Y(4*S*) resonance. Collected so far more than 500 fb⁻¹

<u>Charged tracks reconstruction/ID:</u>

• electron ID: loss in CDC, shower shape

Silicon Vertex Detector

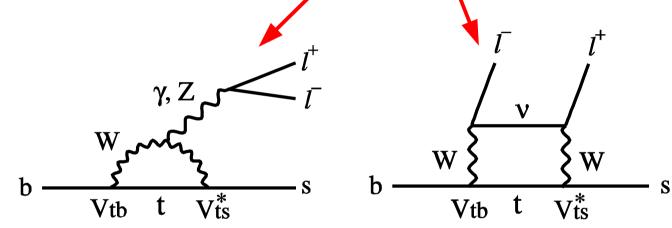
KL Detector (KLM) in ECL and response of ACC;

<u>B</u> signal selection:

typically based on event shape variables with signal window defined using

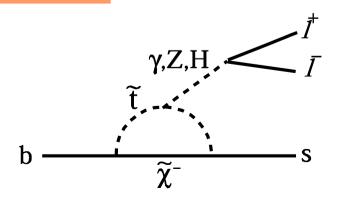
$$M_{bc} = \sqrt{E_{beam}^2 - p_B^2} \quad (\approx m_B)$$

and $\Delta E = E_{B-} E_{beam} \quad (\approx 0)$


eff \geq 90%, π -misID rate $\approx 0.1\%$

- muon ID: based on ECL and KLM; eff \geq 90%, π -misID rate $\approx 1\%$
- K^{\pm} selected using ACC, TOF and CDC; eff \geq 90% and π -misID rate \approx 6%.
- Other charged tracks identified as $\pi^{\scriptscriptstyle\pm}$

 $B \rightarrow K^* \ell^+ \ell^-$


$B \rightarrow K^* \ell^+ \ell^-$: a window on BSM physics

- $b \rightarrow s\ell\ell$: FCNC process, forbidden at tree level
 - at lowest order via electromagnetic penguin or box diagrams
- Lepton pair yields useful observables for testing the theory:
- forward-backward asymmetry (A_{FB})
- invariant mass (q^2)

BSM:

SM:

Sensitive to new physics via insertion of heavy particles in the internal lines.

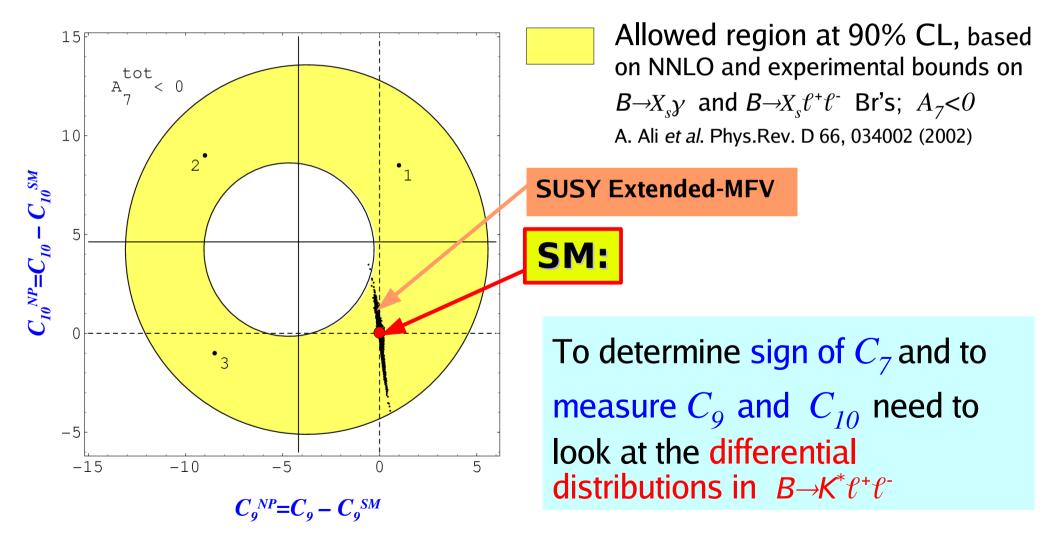
$B \rightarrow K^* \ell^+ \ell^-$: Wilson coefficients

New Physics at the one loop level can be described in terms of an effective Hamiltonian:

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)$$

Local operators, see next slide

- $C_i(\mu)$ Wilson coefficients: effective strength of short distance interactions
- To leading order, only O_7 , O_9 and O_{10} contribute to $b \rightarrow s\ell\ell$
- C_i computed perturbatively up to NNLO: $C_i = A_i + higher order terms$
- The $B \rightarrow K^* \ell^+ \ell^-$ amplitude depends on A_7 , A_9 and A_{10} under the assumption that higher order terms behave like in the SM.

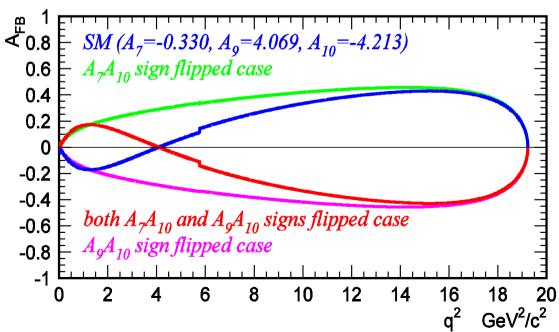

SM VALUES:
$$A_7 = -0.330$$
 , $A_9 = 4.069$, $A_{10} = -4.213$

H.H. Asatryan et al. Phys. Lett. B 507, 162 (2001); A. Ali et al. Phys. Rev. D 66, 034002 (2002)

Operators in \mathcal{H}_{eff}

Constraints on Wilson coefficients

The absolute value of C_7 is constrained by $B \rightarrow X_s \gamma$; constraints on C_9 and C_{10} (donut-shape) are derived from the $B \rightarrow X_s \ell^+ \ell^-$ branching fractions.



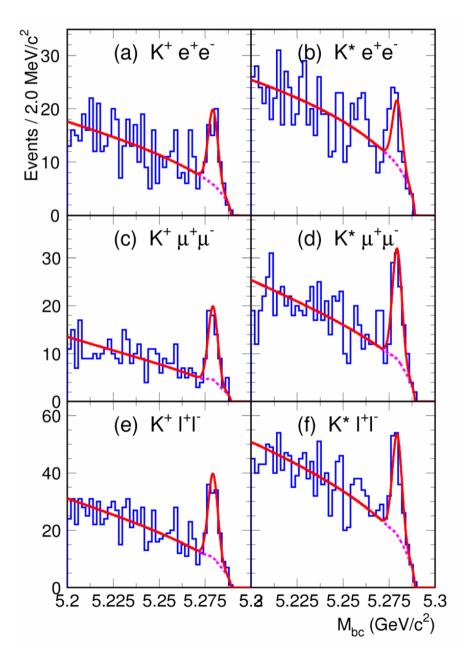
Forward-backward asymmetry in $K^*\ell^+\ell^-$

$$A_{\mathsf{FB}}(q^2) = \frac{\Gamma(q^2, \cos\theta_{B\ell^-} > 0) - \Gamma(q^2, \cos\theta_{B\ell^-} < 0)}{\Gamma(q^2, \cos\theta_{B\ell^-} > 0) + \Gamma(q^2, \cos\theta_{B\ell^-} < 0)}$$

- $\theta_{B\ell^{-}}$ (= θ): angle between B and ℓ^{-} in the dilepton rest frame
- A_{FB} is a function of q^2 of the dilepton system
- A_{FB} non-zero due to interference of vector (C₇, C₉) and axial vector (C₁₀) couplings

More generally, one can extract the coefficients by fitting the double-differential decay width: $d^2\Gamma / dq^2 d \cos\theta$

 $\theta_{B^{\prime}}$


$B \rightarrow K^* \ell^+ \ell^-$ selection

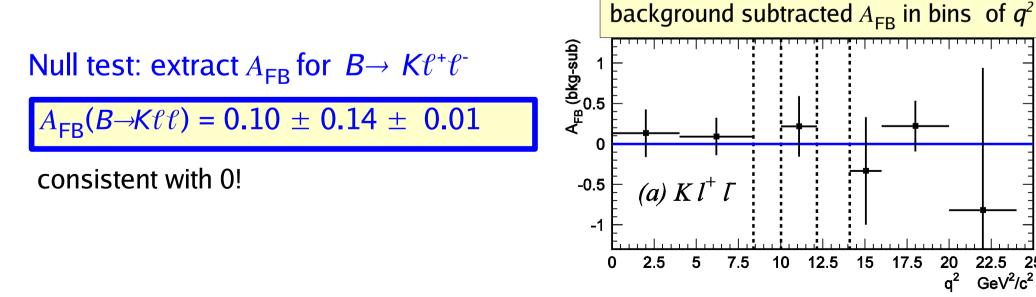
- Dataset: 357 fb⁻¹ = 386M *BB* pairs
- Modes: $K^{*+} \rightarrow K^+ \pi^0$, $K_S \pi^+$; $K^{*0} \rightarrow K^+ \pi^-$
- lepton = e, μ
- Charmonium (J/ψ , ψ (2S)) veto
- Dominant background: *BB* with both *B's* decaying semileptonically: suppressed using E_{miss} and $\cos \theta_{\text{B}}^*$
- $B \rightarrow K \ell^+ \ell^-$ used as "null test": $A_{FB} \sim 0$ in SM, small BSM

D.A. Demir et al. Phys.Rev. D66 (2002) 034015

Signal yield: $N_{sig} = 114 \pm 13$

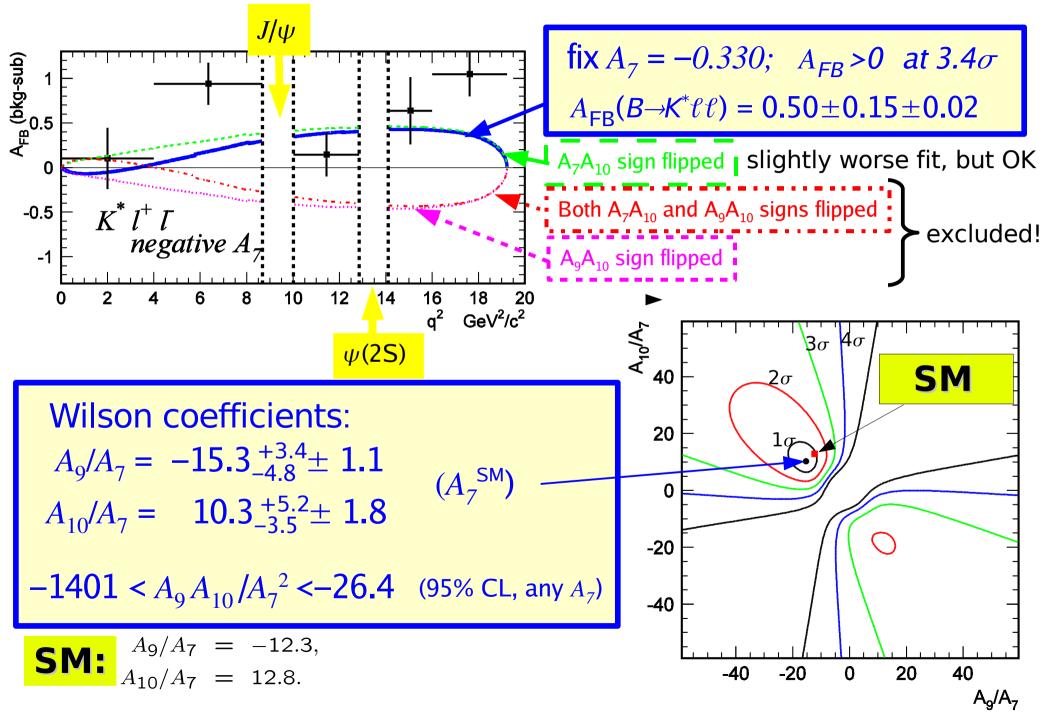
Consistent with Belle measurement (140fb⁻¹): Br($B \rightarrow K^* \ell^+ \ell^-$)=(11.5^{+2.6} $\pm 0.8 \pm 0.2$)x10⁻⁷ A. Ishikawa *et al.* Phys.Rev. Lett. 91, 261601 (2003)

Extraction of A_{FB} and Wilson coeffs.

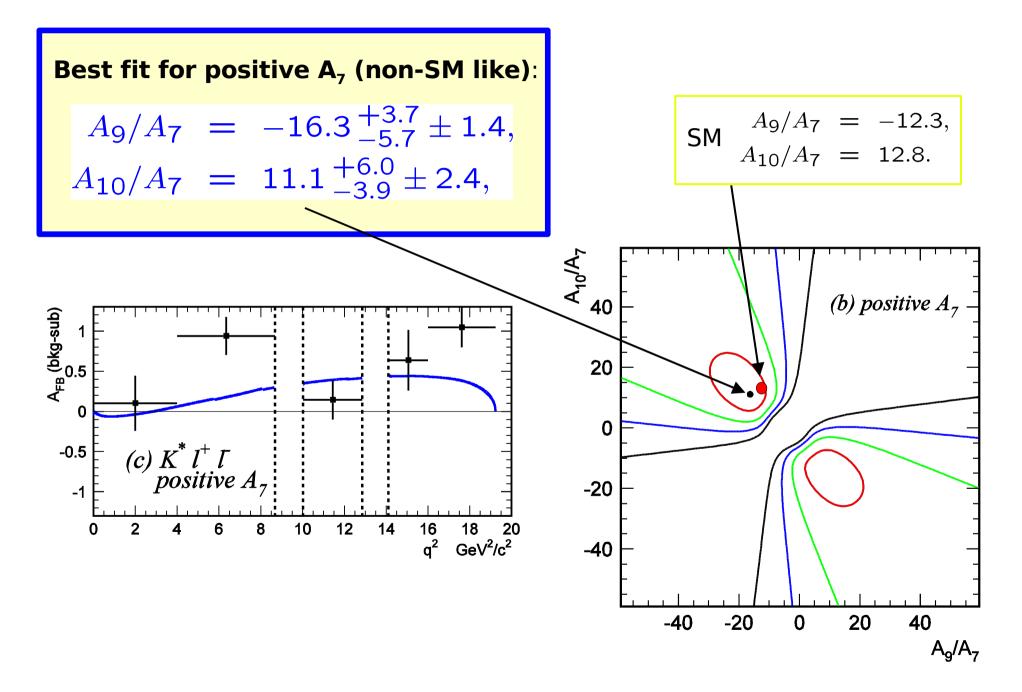

• Extract the ratio of Wilson coefficients A_9/A_7 , A_{10}/A_7 ($A_7 = A_7^{SM} = -0.330$) from an

unbinned maximum likelihood fit on events in the signal window with a pdf including $g(q^2, \theta) = d^2 \Gamma / dq^2 d \cos \theta$.

- Several event categories:
 - signal + "cross feeds" from misreconstructed $B \rightarrow K^{(*)} \ell^+ \ell^-$ or other $b \rightarrow s \ell \ell$
 - 4 background sources dominated by dilepton (80%)

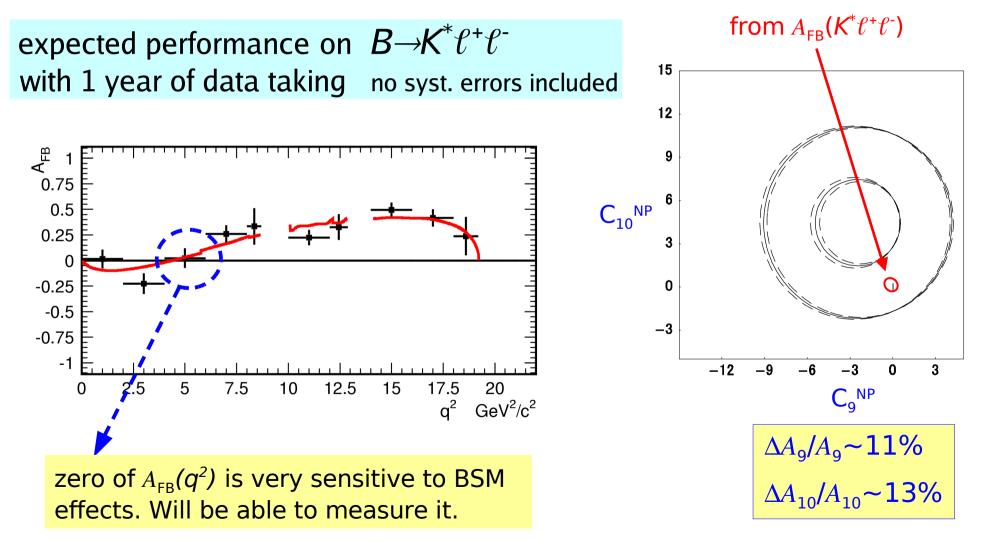

 A_{FB} simply obtained by integration: \mathcal{A}_{F}

$${}_{\mathrm{B}}(q^2) = \frac{\int_{-1}^1 \operatorname{sgn}(\cos\theta) g(q^2,\theta) \, d\cos\theta}{\int_{-1}^1 g(q^2,\theta) \, d\cos\theta}$$



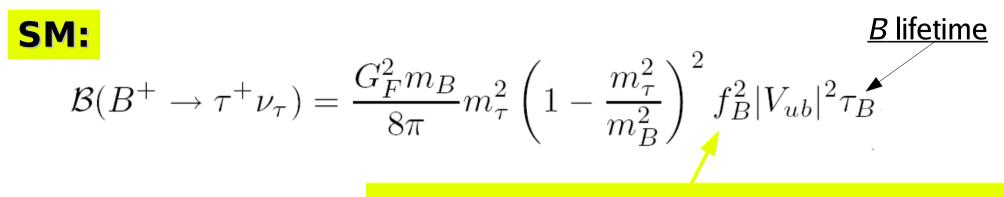
Fit results

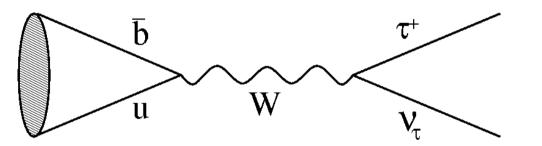
A. Ishikawa et al., Phys.Rev. Lett. 96, 251801 (2006)


Positive A₇ solution

Future prospects for $B \rightarrow K^* \ell^+ \ell^-$

Super B-factory goal:


 $\mathcal{L}=5 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$; in 1 year $\int \mathcal{L}=5 \text{ ab}^{-1}$

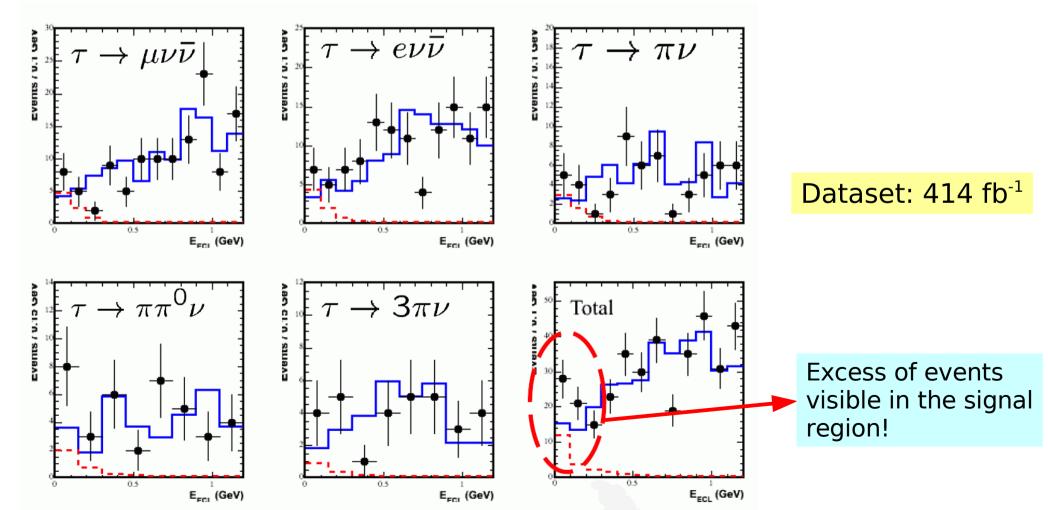

A. Ishikawa at Lake Louise 2006

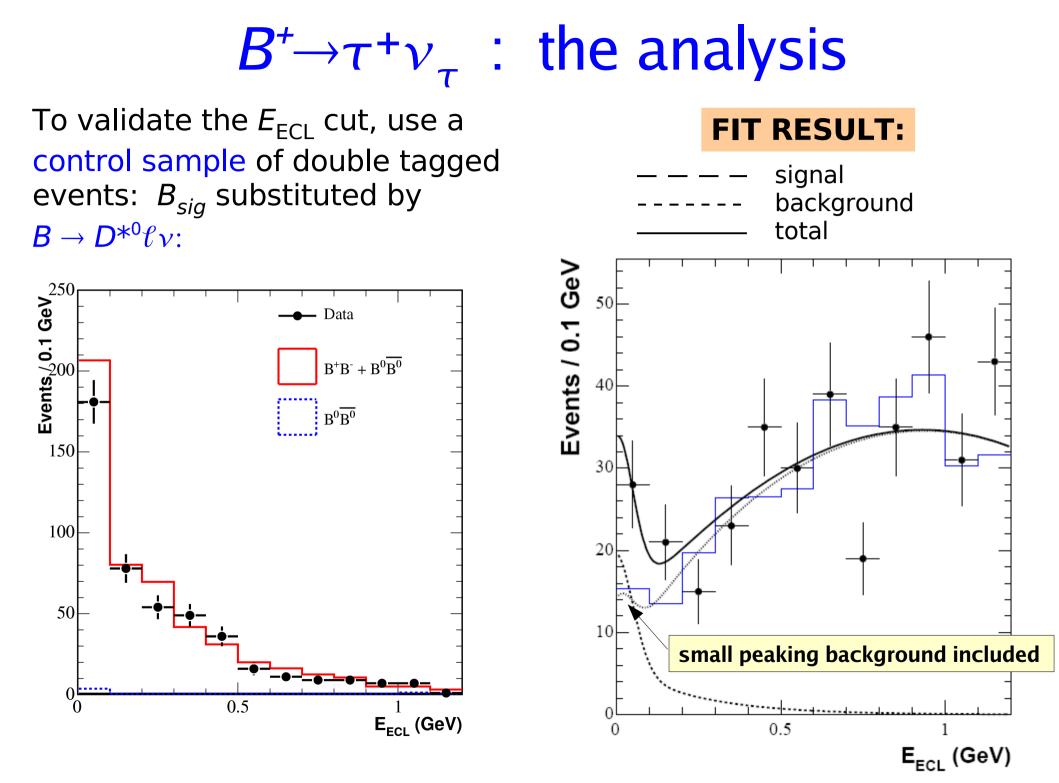
 $B^+ \rightarrow \tau^+ \nu_{\tau}$

$B^+ \rightarrow \tau^+ \nu_{\tau}$: SM prediction

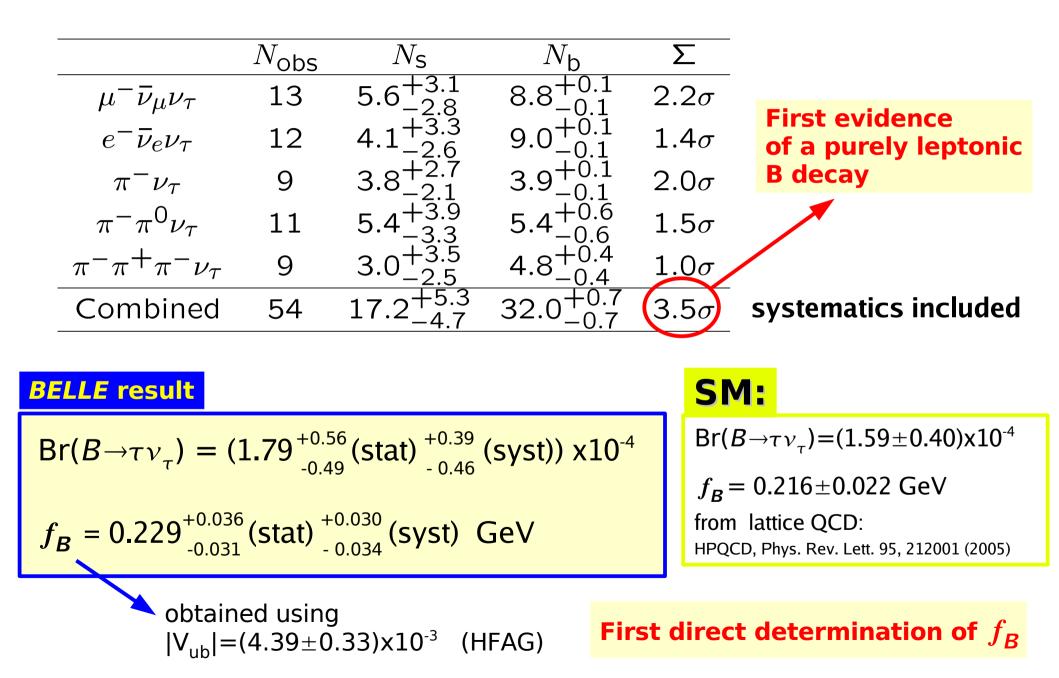
Direct Measurement of decay constant f_B !

• **Br**($B \rightarrow \tau \nu_{\tau}$) \simeq **1.6** x 10⁻⁴ in SM • Other $\ell \nu_{\ell}$ modes are helicity suppressed $\sim (m_{\ell})^2$

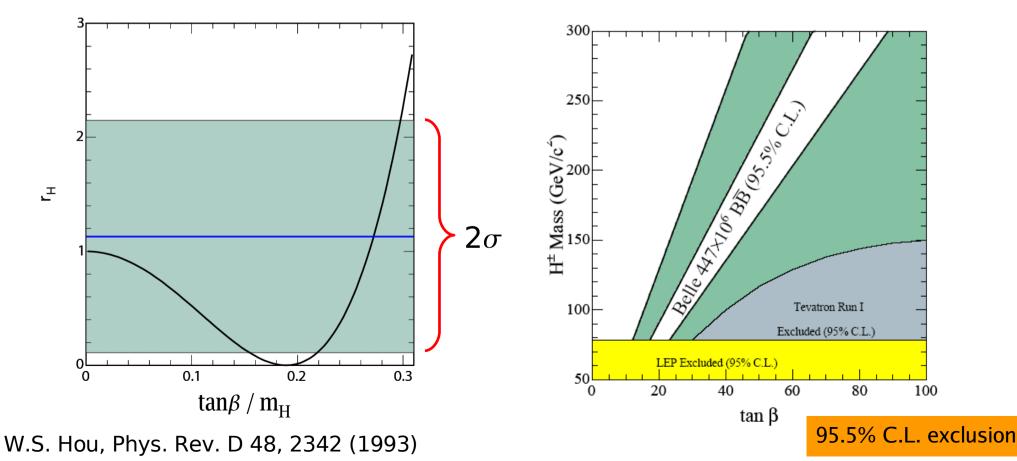

Possible enhancements of BF in


- **BSM:**
- MSSM (charged Higgs): can explore the (M_H , tan β) plane.
 - Pati-Salam models: can set limit on the mass of LQ

Theoretically very clean, experimentally difficult: at least 2 neutrinos...

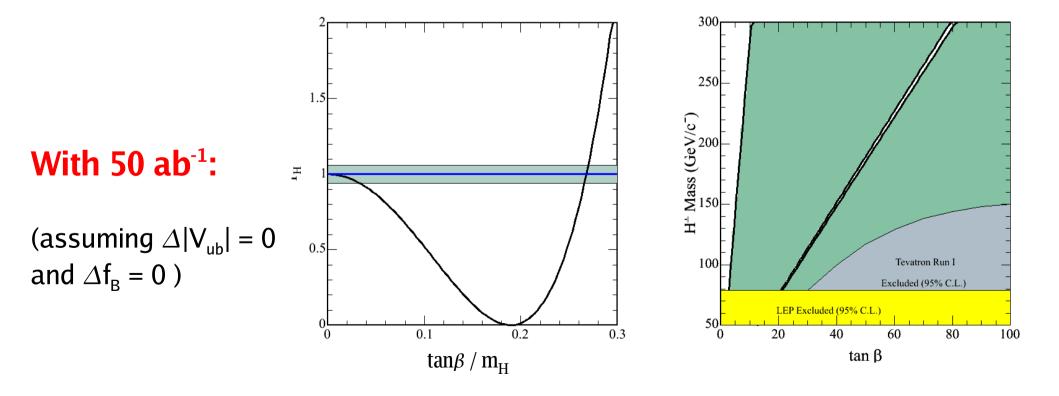

$B^+ \rightarrow \tau^+ \nu_{\tau}$: the analysis

- Reconstruct the companion *B* in exclusive $\overline{D}^{(*)0}h^+$ and $\overline{D}^{(*)0}\overline{D}^{(*)+}_{s}$ channels to get a pure (55%) B^+B^- sample (6.8x10⁵ evts)
- Reconstruct signal from remaining particles in the event
- τ lepton reconstructed in 5 decay modes (81% of all modes)
- Final selection based on remaining energy in ECL: $E_{ECL} \approx 0$ for signal


 $B^+ \rightarrow \tau^+ \nu_{\tau}$: results

$B^+ \rightarrow \tau^+ \nu_{\tau}$: constraints on BSM

Constraint on Charged Higgs (two Higgs doublet model, type II):


$$\mathcal{B}(B \to \tau\nu) = \mathcal{B}(B \to \tau\nu)_{\text{SM}} \times r_H \qquad r_H = (1 - \frac{m_B^2}{m_H^2} \tan^2 \beta)^2$$

$$\mathcal{B}(B \to \tau\nu) = (1.79^{+0.56}_{-0.49} (\text{stat})^{+0.39}_{-0.46} (\text{syst})) \times 10^{-4}$$

$$\mathcal{B}(B \to \tau\nu)_{\text{SM}} = (1.59 \pm 0.40) \times 10^{-4}$$

Future prospects for $B^+ \rightarrow \tau^+ \nu_{\tau}$

Extrapolating the current results to super-B factory luminosities: (assuming $\Delta f_B(LQCD) = 5\%$)

Lum.	$\Delta B(B \rightarrow \tau v)_{exp}$	$\Delta V_{ub} $
414 fb ⁻¹	36%	7.5%
5 ab-1	10%	5.8%
50 ab-1	3%	4.4%

Conclusions

- Belle performed the first measurement of Wilson Coefficients in $B \rightarrow K^* \ell^+ \ell^-$:
 - Integrated forward-backward asymmetry significantly >0
 - → First determination of sign of A_9A_{10}
 - Results compatible with SM prediction and ruling out many BSM scenarios
- $B^+ \rightarrow \tau^+ \nu_{\tau}$: first evidence of a purely leptonic *B* decay
 - Measured branching fraction consistent with SM prediction
 - First direct determination of the B decay constant
 - → Set constraints on $M_{\rm H}$ -tan β in MSSM
- Still a lot to come from Belle and hopefully Super Belle!

BACKUP SLIDES

$B \rightarrow K^* \ell^+ \ell^-$: details of the fit

The Probability Density Function:

$$P(M_{\rm bc}, q^2, \cos\theta; A_9/A_7, A_{10}/A_7)$$

$$= \frac{1}{N_{\rm sig}} f_{\rm sig} \epsilon_{\rm sig}(q^2, \cos\theta) g(q^2, \cos\theta)$$

$$+ \frac{1}{N_{\rm CF}} f_{\rm CF} \epsilon_{\rm CF}(q^2, \cos\theta) g(q^2, \cos\theta)$$

$$+ \frac{1}{N_{\rm IF}} f_{\rm IF} \epsilon_{\rm IF}(q^2, \cos\theta) g(q^2, -\cos\theta)$$

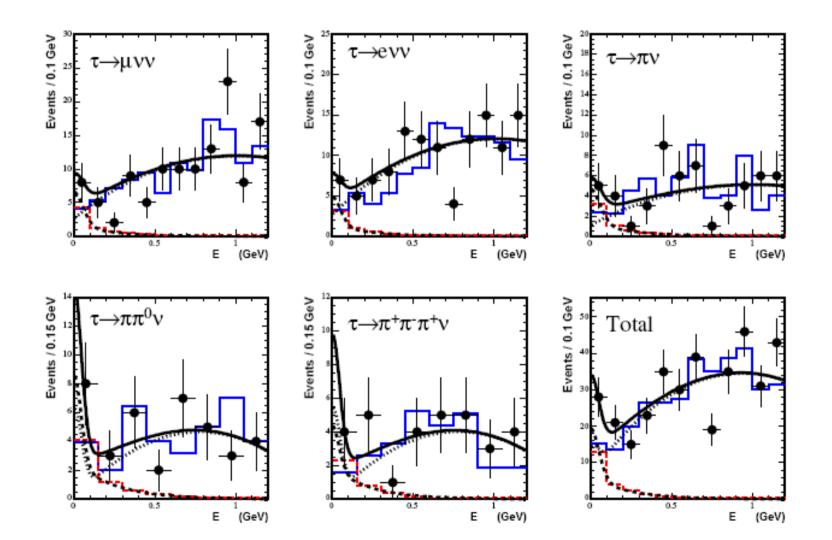
$$+ (1 - f_{\rm sig} - f_{\rm CF} - f_{\rm IF} - f_{K^*hh} - f_{\psi X_s}) \times$$

$$\left\{ (f_{K^*\ell h} \mathcal{P}_{K^*\ell h}(q^2, \cos\theta) + (1 - f_{K^*\ell h}) \mathcal{P}_{\rm dl}(q^2, \cos\theta) \right\}$$

$$+ f_{K^*hh} \mathcal{P}_{K^*hh}(q^2, \cos\theta) + f_{\psi X_s} \mathcal{P}_{\psi X_s}(q^2, \cos\theta).$$

 $\begin{array}{l} \pmb{\epsilon} : \text{efficiency functions, estimated from data and MC} \\ \mathbf{f} : \text{event by event signal and background probability, from } \mathsf{M}_{\mathsf{bc}} \text{ fit} \end{array}$

Wilson coeffs, systematic uncertainties


source	negative A ₇ solution		positive A ₇ solution	
	A ₉ /A ₇	A ₁₀ /A ₇	A ₉ /A ₇	A ₁₀ /A ₇
A ₇	+0.2 -0.0	±0.0	+0.1 -0.2	+0.3 -0.1
m _b (4.8±0.2 GeV/ <i>c</i> ²)	± 0.7	± 0.5	± 0.6	± 0.4
Form factor model	± 0.7	± 1.7	± 1.0	+2.2
q ² resolution	± 0.3	± 0.4	± 0.3	± 0.4
efficiency	± 0.1	± 0.0	± 0.1	± 0.1
signal probability	+0.4 -0.5	+0.2 -0.3	+0.4 -0.5	±0.4
total	±1.1	± 1.8	+1.3 -1.4	+2.4 -2.3

$B^+ \rightarrow \tau^+ \nu_{\tau}$, signal selection criteria

$ \tau^- \to \mu^- \nu \overline{\nu} \ \tau^- \to e^- \nu \overline{\nu} $	$\tau^- \to \pi^- \nu$	$\tau^- \to \pi^- \pi^0 \nu$	$\tau^- \to \pi^- \pi^+ \pi^- \nu$	
1 si	gnal-side track		3 signal-side tracks	
No signal-side π^0		1 signal-side π^0	No signal-side π^0	
$E_{ECL} < 0.2 ~{ m GeV}$		$E_{ECL} < 0.3 { m GeV}$		
$P_{\ell^-}^* > 0.3 { m GeV}$	$P^*_{\pi^-} > 0.8 { m GeV}$	$P^*_{\pi\pi^+}>$ 1.2 GeV	$P^*_{3\pi}>$ 1.8 GeV	
P^*_{miss} > 0.2 GeV	$P^*_{miss} > 1.0 { m GeV}$	$P_{miss}^{**} > 1.2 \text{ GeV}$	$P^*_{miss} > 1.8 { m GeV}$	
		$ M_{ ho^{\circ}} - M_{\pi\pi^{\circ}} $	$ M_{\rho} - M_{\pi^{-}\pi^{-}} $	
		< 0.15 GeV	< 0.15 GeV	
			$ M_{a} - M_{3\pi} $	
			< 0.3 GeV	
$-0.86 < \cos\theta^*_{miss} < 0.95$				

Signal-side efficiency including decay branching fractions: $15.81 \pm 0.05\%$

$B^+ \rightarrow \tau^+ \nu_{\tau}$, fits to individual modes

$B^+ \rightarrow \tau^+ \nu_{\tau}$, systematic uncertainties

• Signal selection efficiencies

Source	$\mu^- \nu \overline{\nu} (\%)$	$e^- \nu \overline{\nu} (\%)$	$\pi^- \nu(\%)$	$\pi^{-}\pi^{0}\nu(\%)$	$\pi^{+}\pi^{-}\pi^{+}\nu(\%)$
Tracking	1.0	1.0	1.0	1.0	3.0
au decay BR	0.3	0.3	1.0	0.6	1.1
MC statistics	0.6	0.6	0.7	1.0	2.0
Lepton ID	2.1	2.1	-	-	-
π^0 reconstruction	-	-	-	3	-
π^{\pm} ID	-	-	2.0	2.0	6.0

- Tag reconstruction efficiency : 10.5% Difference of yields between data and MC in the $B \rightarrow D^{*0} \ell \nu$ control sample
- Number of BB : 1%
- Signal yield : +22.5% -25.7%

- signal shape ambiguity estimated by varying the signal PDF parameters

- BG shape : changing PDF
- Total systematic uncertainty: +25.5% -28.4%