$B \rightarrow K^{*} \varphi^{+} \varphi^{-}$and $B \rightarrow \tau \mathcal{v}$ at Belle

Stefano Villa, EPFL

Flavour in the Era of the LHC - $4^{\text {th }}$ meeting CERN, October 9-11, 2006

Summary

- B physics at Belle
- The $B \rightarrow K^{*} C^{+} \varphi^{-}$channel
\rightarrow forward-backward asymmetry
\rightarrow measurement of Wilson coefficients
\rightarrow future prospects
- Evidence for $B \rightarrow \tau \nu_{\tau}$
\rightarrow description of the measurement
\rightarrow constraints on charged Higgs
\rightarrow future prospects
- Conclusions

B physics at Belle

$B \rightarrow K^{*} \varphi^{+} \varphi^{-}$

$B \rightarrow K^{*} C^{+} \varphi^{-}:$a window on BSM physics

- $b \rightarrow s f e$: FCNC process, forbidden at tree level
- at lowest order via electromagnetic penguin or box diagrams

Lepton pair yields useful observables for testing the theory:

- forward-backward asymmetry ($A_{\text {FB }}$)
- invariant mass (q^{2})

BSM:

Sensitive to new physics via insertion of heavy particles in the internal lines.

$B \rightarrow K^{*}+C^{+} e^{*}$: Wilson coefficients

New Physics at the one loop level can be described in terms of an effective Hamiltonian:

$$
\mathcal{H}_{e f f}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1}^{10} C_{i}(\mu) \mathcal{O}_{i}(\mu)
$$

Local operators, see next slide

- $C_{i}(\mu)$ Wilson coefficients: effective strength of short distance interactions
- To leading order, only O_{7}, O_{9} and O_{10} contribute to $b \rightarrow s e \ell$
- C_{i} computed perturbatively up to NNLO: $C_{i}=A_{i}$ + higher order terms
- The $B \rightarrow K^{*} \ell^{+} \varphi^{-}$amplitude depends on A_{7}, A_{9} and A_{10} under the assumption that higher order terms behave like in the SM.

SM VALUES: $A_{7}=-0.330, A_{9}=4.069, A_{10}=-4.213$

Operators in $\mathcal{H}_{\text {eff }}$

$$
\begin{aligned}
& \mathcal{O}_{1}=\left(\bar{s}_{\alpha} \gamma_{\mu} L c_{\beta}\right)\left(\bar{c}_{\beta} \gamma^{\mu} L b_{\alpha}\right), \\
& \mathcal{O}_{2}=\left(\bar{s}_{\alpha} \gamma_{\mu} L c_{\alpha}\right)\left(\bar{c}_{\beta} \gamma^{\mu} L b_{\beta}\right), \\
& \mathcal{O}_{3}=\left(\bar{s}_{\alpha} \gamma_{\mu} L b_{\alpha}\right) \sum_{q=u, d, s, c, b}\left(\bar{q}_{\beta} \gamma^{\mu} L q_{\beta}\right), \\
& \mathcal{O}_{4}=\left(\bar{s}_{\alpha} \gamma_{\mu} L c_{\beta}\right) \sum_{q=u, d, s, c, b}\left(\bar{q}_{\beta} \gamma^{\mu} L q_{\alpha}\right), \\
& \mathcal{O}_{5}=\left(\bar{s}_{\alpha} \gamma_{\mu} L b_{\alpha}\right) \sum_{q=u, d, s, c, b}\left(\bar{q}_{\beta} \gamma^{\mu} R q_{\beta}\right), \\
& \mathcal{O}_{6}=\left(\bar{s}_{\alpha} \gamma_{\mu} L c_{\beta}\right) \sum_{q=u, d, s, c, b}\left(\bar{q}_{\beta} \gamma^{\mu} R q_{\alpha}\right), \\
& \mathcal{O}_{7}=\frac{e}{16 \pi^{2}} \bar{s}_{\alpha} \sigma_{\mu \nu}\left(m_{s} L+m_{b} R\right) b_{\alpha} F^{\mu \nu}, \\
& \mathcal{O}_{8}=\frac{g}{16 \pi^{2}} \bar{s}_{\alpha} \sigma_{\mu \nu}\left(m_{s} L+m_{b} R\right) T_{\alpha \beta}^{a} b_{\beta} G^{a \mu \nu}, \\
& \mathcal{O}_{9}=\frac{e^{2}}{16 \pi} \bar{s}_{\alpha} \gamma^{\mu} L b_{\alpha} \bar{\ell} \gamma_{\mu} \ell, \\
& \mathcal{O}_{10}=\frac{e^{2}}{16 \pi} \bar{s}_{\alpha} \gamma^{\mu} L b_{\alpha} \bar{\ell} \gamma_{\mu} \gamma_{5} \ell, \\
& \text { electromagnetic o } \\
& \text { semileptonic vector }
\end{aligned}
$$

Constraints on Wilson coefficients

The absolute value of C_{7} is constrained by $B \rightarrow X_{s} \gamma$; constraints on C_{9} and C_{10} (donut-shape) are derived from the $B \rightarrow X_{s} \ell^{+} \ell^{-}$branching fractions.

Allowed region at 90% CL, based on NNLO and experimental bounds on $B \rightarrow X_{s} y$ and $B \rightarrow X_{s} \ell^{+} e^{-}$Br's; $A_{7}<0$
A. Ali et al. Phys.Rev. D 66, 034002 (2002)

SUSY Extended-MFV

SM:

To determine sign of C_{7} and to measure C_{9} and C_{10} need to look at the differential distributions in $B \rightarrow K^{*} \varphi^{+} e^{-}$

Forward-backward asymmetry in $K^{*} \varphi^{+} \varphi^{-}$

$$
A_{\mathrm{FB}}\left(q^{2}\right)=\frac{\Gamma\left(q^{2}, \cos \theta_{B \ell^{-}}>0\right)-\Gamma\left(q^{2}, \cos \theta_{B \ell^{-}}<0\right)}{\Gamma\left(q^{2}, \cos \theta_{B \ell^{-}}>0\right)+\Gamma\left(q^{2}, \cos \theta_{B \ell^{-}}<0\right)}
$$

- $\theta_{B \ell^{-}}(\equiv \theta)$: angle between B and ℓ^{-}in the dilepton rest frame
- A_{FB} is a function of q^{2} of the dilepton system

- A_{FB} non-zero due to interference of vector $\left(\mathrm{C}_{7}, \mathrm{C}_{9}\right)$ and axial vector $\left(\mathrm{C}_{10}\right)$ couplings

More generally, one can extract the coefficients by fitting the double-differential decay width:
$d^{2} \Gamma / d q^{2} d \cos \theta$

$B \rightarrow K^{*} C^{+} e^{-}$selection

- Dataset: $357 \mathrm{fb}^{-1}=386 \mathrm{M}$ BB pairs
- Modes: $K^{*+} \rightarrow K^{+} \pi^{0}, K_{S} \pi^{+} ; K^{*} \rightarrow K^{+} \pi^{-}$
- lepton $=e, \mu$
- Charmonium $(J / \psi, \psi(2 S))$ veto
- Dominant background: BB with both B's decaying semileptonically: suppressed using $E_{\text {miss }}$ and $\cos \theta_{\mathrm{B}}{ }^{*}$
- $B \rightarrow K \ell^{+} \varphi^{-}$used as "null test": $A_{\mathrm{FB}} \sim 0$ in SM, small BSM
D.A. Demir et al. Phys.Rev. D66 (2002) 034015

Signal yield: $\mathrm{N}_{\text {sig }}=114 \pm 13$

Consistent with Belle measurement ($140 \mathrm{fb}^{-1}$):
$\operatorname{Br}\left(B \rightarrow K^{*} \varphi^{+} C^{-}\right)=\left(11.5^{+2.6} \pm 0.8 \pm 0.2\right) \times 10^{-7}$
A. Ishikawa et al. Phys.Rev. Lett. 91, 261601 (2003)

Extraction of $A_{F B}$ and Wilson coeffs.

- Extract the ratio of Wilson coefficients $A_{9} / A_{7}, A_{10} / A_{7}\left(A_{7}=A_{7}{ }^{S M}=-0.330\right)$ from an unbinned maximum likelihood fit on events in the signal window with a pdf including $\mathrm{g}\left(q^{2}, \theta\right)=d^{2} \Gamma / d q^{2} d \cos \theta$.
- Several event categories:
- signal + "cross feeds" from misreconstructed $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$or other $b \rightarrow$ s $\ell \ell$
- 4 background sources - dominated by dilepton (80%)
A_{FB} simply obtained by integration: $\quad \mathcal{A}_{\mathrm{FB}}\left(q^{2}\right)=\frac{\int_{-1}^{1} \operatorname{sgn}(\cos \theta) g\left(q^{2}, \theta\right) d \cos \theta}{\int_{-1}^{1} g\left(q^{2}, \theta\right) d \cos \theta}$

Null test: extract A_{FB} for $B \rightarrow K \ell^{+} \varphi^{-}$
$A_{\text {FB }}(B \rightarrow$ K $\ell \ell)=0.10 \pm 0.14 \pm 0.01$
consistent with 0 !

Fit results

A. Ishikawa et al., Phys.Rev. Lett. 96, 251801 (2006)

Positive A_{7} solution

Best fit for positive $\mathbf{A}_{\boldsymbol{7}}$ (non-SM like):

$$
\begin{aligned}
A_{9} / A_{7} & =-16.3_{-5.7}^{+3.7} \pm 1.4 \\
A_{10} / A_{7} & =11.1_{-3.9}^{+6.0} \pm 2.4
\end{aligned}
$$

$$
\mathrm{SM} \begin{aligned}
A_{9} / A_{7} & =-12.3 \\
A_{1} / A_{7} & =12.8
\end{aligned}
$$

Future prospects for $B \rightarrow K^{*} e^{+} e^{-}$

Super B-factory goal: $\quad L=5 \times 10^{\mathbf{3 5}} \mathbf{c m}^{-2} \mathbf{s}^{-1}$; in 1 year $\int \mathcal{L}=\mathbf{5} \mathbf{a b}^{-1}$

expected performance on $B \rightarrow K^{*} C^{+} \varphi^{-}$ with 1 year of data taking no syst. errors included

zero of $A_{\text {FB }}\left(q^{2}\right)$ is very sensitive to BSM effects. Will be able to measure it.

A. Ishikawa at Lake Louise 2006

$$
B^{+} \rightarrow \tau^{+} \mathcal{V}_{\tau}
$$

$B^{+} \rightarrow \tau^{+} \nu_{\tau}: S M$ prediction

SM:
B lifetime

$$
\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{\tau}^{2}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B}^{B}
$$

Direct Measurement of decay constant f_{B} !

$-\operatorname{Br}\left(B \rightarrow \tau v_{\tau}\right) \simeq 1.6 \times 10^{-4}$ in SM

- Other $\ell \nu_{t}$ modes are helicity suppressed $\sim\left(\mathrm{m}_{\ell}\right)^{2}$

BSM: - MSSM (charged Higgs): can explore the $\left(\mathrm{M}_{\mathrm{H}}, \tan \beta\right.$) plane.

- Pati-Salam models: can set limit on the mass of LQ

Theoretically very clean, experimentally difficult: at least 2 neutrinos...

$B^{+} \rightarrow \tau^{+} \nu_{\tau}$: the analysis

- Reconstruct the companion B in exclusive $D^{(*) 0} h^{+}$and $D^{(*) 0} D^{(*)+}$ channels to get a pure (55%) $B^{+} B^{-}$sample (6.8×10^{5} evts)
- Reconstruct signal from remaining particles in the event
- τ lepton reconstructed in 5 decay modes (81% of all modes)
- Final selection based on remaining energy in ECL: $E_{\mathrm{ECL}} \cong 0$ for signal

Dataset: $414 \mathrm{fb}^{-1}$

Excess of events visible in the signal region!

$B^{+} \rightarrow \tau^{+} v_{\tau}$: the analysis

To validate the $E_{\text {ECL }}$ cut, use a control sample of double tagged events: $B_{\text {sig }}$ substituted by $B \rightarrow D^{* 0} \ell \nu$:

FIT RESULT:

- - - - signal
 ------- background
 —— total

$B^{+} \rightarrow T^{+} \nu_{\tau}:$ results

	$N_{\text {obs }}$	$N_{\text {S }}$	$N_{\text {b }}$	Σ	
$\mu^{-} \bar{\nu}_{\mu} \nu_{\tau}$	13	$5.6{ }_{-2.8}^{+3.1}$	$8.8{ }_{-0.1}^{+0.1}$	2.2σ	
$e^{-\bar{\nu}_{e} \nu_{\tau}}$	12	4.15	$9.0_{-0.1}^{+0.1}$	1.4σ	First evidence of a purely leptonic
$\pi^{-} \nu_{\tau}$	9	$3.8{ }^{-2.7}$	$3.9{ }^{-0.1}$	2.0σ	B decay
$\pi^{-} \pi^{0} \nu_{\tau}$	11	5.4-3.9	$5.4+$	1.5σ	
$\pi^{-} \pi^{+} \pi^{-} \nu_{\tau}$	9	3.0 ${ }_{-2.5}^{+3.5}$	$4.8{ }^{-0.4}$		
Combined	54	$17.2_{-4.7}^{+5.3}$	$32.0_{-0.7}^{+0.7}$	(3.5\%	stematics included

BELLE result

$\operatorname{Br}\left(B \rightarrow \tau \nu_{\tau}\right)=\left(1.79_{-0.49}^{+0.56}(\text { stat })_{-0.46}^{+0.39}(\right.$ syst $\left.)\right) \times 10^{-4}$
$f_{B}=0.229_{-0.031}^{+0.036}$ (stat) ${ }_{-0.034}^{+0.030}$ (syst) GeV

SM:

$\operatorname{Br}\left(B \rightarrow \tau \nu_{\tau}\right)=(1.59 \pm 0.40) \times 10^{-4}$
$f_{B}=0.216 \pm 0.022 \mathrm{GeV}$
from lattice QCD:
HPQCD, Phys. Rev. Lett. 95, 212001 (2005)
obtained using
$\left|\mathrm{V}_{\mathrm{ub}}\right|=(4.39 \pm 0.33) \times 10^{-3} \quad(\mathrm{HFAG})$

First direct determination of f_{B}

$B^{+} \rightarrow \tau^{+} \nu_{\tau}:$ constraints on BSM

Constraint on Charged Higgs (two Higgs doublet model, type II):

$$
\mathcal{B}(B \rightarrow \tau \nu)=\mathcal{B}(B \rightarrow \tau \nu)_{\mathrm{SM}} \times r_{H} \quad r_{H}=\left(1-\frac{m_{B}^{2}}{m_{H}^{2}} \tan ^{2} \beta\right)^{2}
$$

$$
\left.\begin{array}{l}
\mathcal{B}(B \rightarrow \tau \nu)=\left(1.79_{-0.49}^{+0.56}(\text { stat })_{-0.46}^{+0.39}(\text { syst })\right) \times 10^{-4} \\
\mathcal{B}(B \rightarrow \tau \nu)_{\mathrm{SM}}=(1.59 \pm 0.40) \times 10^{-4}
\end{array}\right\} r_{H}=1.13 \pm 0.51
$$

W.S. Hou, Phys. Rev. D 48, 2342 (1993)

Future prospects for $B^{+} \rightarrow \tau^{+} \nu_{\tau}$

Extrapolating the current results to super-B factory luminosities: (assuming $\Delta f_{B}($ LQCD $\left.)=5 \%\right)$

Lum.	$\Delta \mathrm{B}(\mathrm{B} \rightarrow \tau v)_{\text {exp }}$	$\Delta\left\|\mathrm{V}_{\text {ub }}\right\|$
$414 \mathrm{fb}^{-1}$	36%	7.5%
$5 \mathrm{ab}^{-1}$	10%	5.8%
$50 \mathrm{ab}^{-1}$	3%	4.4%

With $50 \mathrm{ab}^{-1}$:
(assuming $\Delta\left|\mathrm{V}_{\text {ub }}\right|=0$ and $\Delta \mathrm{f}_{\mathrm{B}}=0$)

Conclusions

- Belle performed the first measurement of Wilson Coefficients in $B \rightarrow K^{+} \ell^{+} \varphi^{-}$:
\rightarrow Integrated forward-backward asymmetry significantly >0
\rightarrow First determination of sign of $A_{9} A_{10}$
\rightarrow Results compatible with SM prediction and ruling out many BSM scenarios
- $B^{+} \rightarrow \tau^{+} \nu_{\tau}$: first evidence of a purely leptonic B decay
\rightarrow Measured branching fraction consistent with SM prediction
\rightarrow First direct determination of the B decay constant
\rightarrow Set constraints on $M_{H^{-}}-\tan \beta$ in MSSM
- Still a lot to come from Belle and hopefully Super Belle!

BACKUP SLIDES

$B \rightarrow K^{*} \ell^{+} \varrho^{-}$: details of the fit

The Probability Density Function:

$$
\begin{aligned}
& P\left(M_{\mathrm{bc}}, q^{2}, \cos \theta ; A_{9} / A_{7}, A_{10} / A_{7}\right) \\
= & \frac{1}{N_{\mathrm{sig}}} f_{\mathrm{sig}} \epsilon_{\mathrm{sig}}\left(q^{2}, \cos \theta\right) g\left(q^{2}, \cos \theta\right) \\
+ & \frac{1}{N_{\mathrm{CF}}} f_{\mathrm{CF}} \epsilon_{\mathrm{CF}}\left(q^{2}, \cos \theta\right) g\left(q^{2}, \cos \theta\right) \\
+ & \frac{1}{N_{\mathrm{IF}}} f_{\mathrm{IF}} \epsilon_{\mathrm{IF}}\left(q^{2}, \cos \theta\right) g\left(q^{2},-\cos \theta\right) \\
+ & \left(1-f_{\mathrm{sig}}-f_{\mathrm{CF}}-f_{\mathrm{IF}}-f_{K^{*} h h}-f_{\psi X_{s}}\right) \times \\
& \left\{\left(f_{K^{*} \ell h} \mathcal{P}_{K^{*} \ell h}\left(q^{2}, \cos \theta\right)+\left(1-f_{K^{*} \ell h}\right) \mathcal{P}_{\mathrm{dl}}\left(q^{2}, \cos \theta\right)\right\}\right. \\
+ & f_{K^{*} h h} \mathcal{P}_{K^{*} h h}\left(q^{2}, \cos \theta\right)+f_{\psi X_{s}} \mathcal{P}_{\psi X_{s}}\left(q^{2}, \cos \theta\right)
\end{aligned}
$$

ϵ : efficiency functions, estimated from data and MC
f : event by event signal and background probability, from M_{bc} fit

Wilson coeffs, systematic uncertainties

source	negative A_{7} solution		positive A_{7} solution	
	$\mathrm{A}_{9} / \mathrm{A}_{7}$	$\mathrm{~A}_{10} / \mathrm{A}_{7}$	$\mathrm{~A}_{9} / \mathrm{A}_{7}$	$\mathrm{~A}_{10} / \mathrm{A}_{7}$
$\mathrm{~A}_{7}$	$+0.2-0.0$	± 0.0	$+0.1-0.2$	$+0.3-0.1$
$\mathrm{~m}_{\mathrm{b}}\left(4.8 \pm 0.2 \mathrm{GeV} / \mathrm{c}^{2}\right)$	± 0.7	± 0.5	± 0.6	± 0.4
Form factor model	± 0.7	± 1.7	± 1.0	+2.2
q^{2} resolution	± 0.3	± 0.4	± 0.3	± 0.4
efficiency	± 0.1	± 0.0	± 0.1	± 0.1
signal probability	$\mathbf{+ 0 . 4 - 0 . 5}$	$+0.2-0.3$	$+0.4-0.5$	± 0.4
total	$\pm \mathbf{1 . 1}$	$\pm \mathbf{1 . 8}$	$\mathbf{+ 1 . 3 - 1 . 4}$	$\mathbf{+ 2 . 4 - \mathbf { 2 . 3 }}$

$B^{+} \rightarrow \tau^{+} \nu_{\tau}$, signal selection criteria

Signal-side efficiency including decay branching fractions: $15.81 \pm 0.05 \%$

$B^{+} \rightarrow T^{+} \nu_{\tau}$, fits to individual modes

$B^{+} \rightarrow \tau^{+} \nu_{\tau}$, systematic uncertainties

- Signal selection efficiencies

Source	$\mu^{-} \nu \bar{\nu}(\%)$	$e^{-} \nu \bar{\nu}(\%)$	$\pi^{-} \nu(\%)$	$\pi^{-} \pi^{0} \nu(\%)$	$\pi^{+} \pi^{-} \pi^{+} \nu(\%)$
Tracking	1.0	1.0	1.0	1.0	3.0
τ decay BR	0.3	0.3	1.0	0.6	1.1
MC statistics	0.6	0.6	0.7	1.0	2.0
Lepton ID	2.1	2.1	-	-	-
π^{0} reconstruction	-	-	-	3	-
$\pi^{ \pm}$ID	-	-	2.0	2.0	6.0

- Tag reconstruction efficiency : 10.5\%

Difference of yields between data and MC in the $B \rightarrow D^{* 0} \ell \nu$ control sample

- Number of BB : 1\%
- Signal yield : +22.5\% -25.7\%
- signal shape ambiguity estimated by varying the signal PDF parameters
- BG shape : changing PDF
- Total systematic uncertainty: +25.5\% -28.4\%

