Physics at Charm Threshold: Recent Results from CLEO-c & CESR-c & Prospects for BESIII

> David Asner, Carleton University 9 Oct 2006, presented at the 4th meeting of FLAVOUR IN THE ERA OF THE LHC

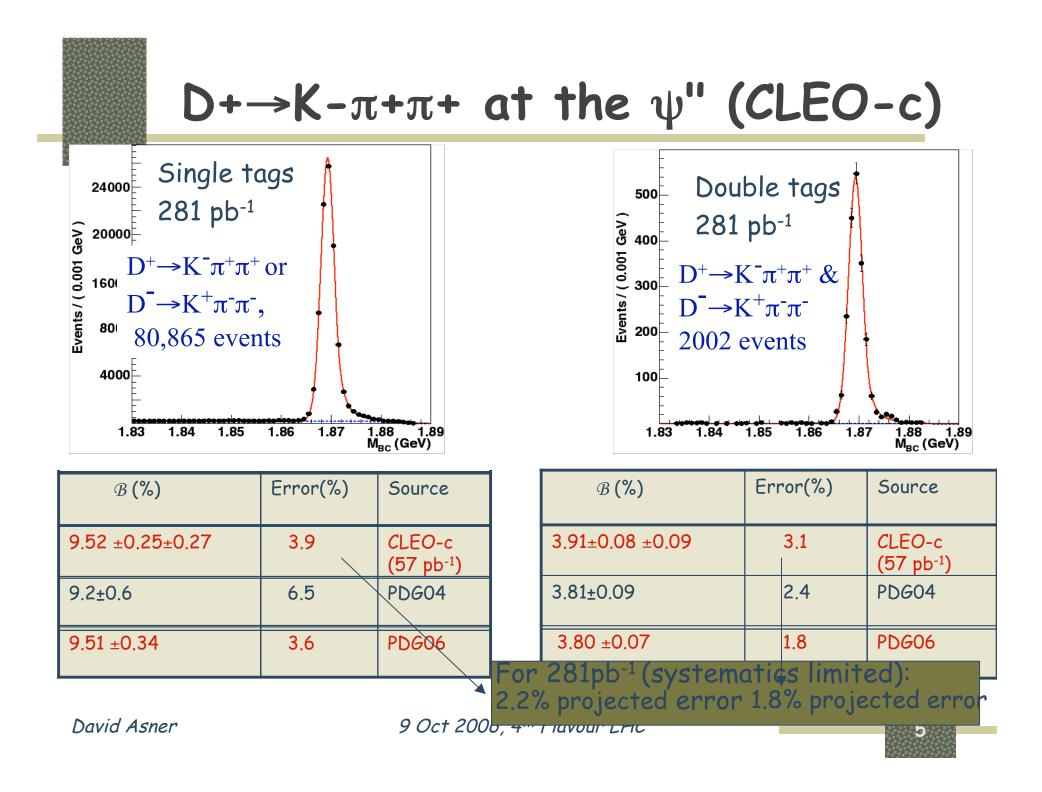
What We Hope to Learn - I

Precision CKM

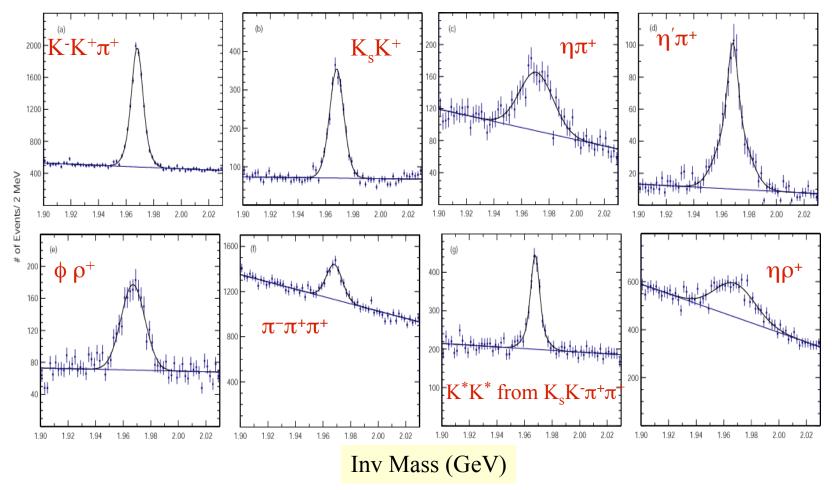
- Over constrain CKM with results from B-sector
- Inconsistencies indicate New Physics
- Precision charm measurements required for precision CKM results in B sector
- Leptonic Charm Decays $D \rightarrow \ell^+ v$: Check QCD calculations including Lattice (LQCD)
 - Measure decay constants fD, fDs
 - Improved f_B possible from f_D measurement + LQCD
 - Important for $|V_{td}|$ and $|V_{ts}|$
- Semileptonic decay rates & form-factors: Check QCD calculations
 - Measurements of $|V_{cs}|$ and $|V_{cd}|$
 - Test theoretical form factor models in D meson decays
 - Impacts prediction of form factors for B meson decays
 - Important for $|V_{ub}|$ and $|V_{cb}|$
- Hadronic Charm Decays
 - Important for |V_{cb}|
 - Engineering numbers useful for other studies
 - B→Charm is dominant, so knowing lots about charm is useful, e.g. absolute B's, resonant substructure, phases on Dalitz plots, especially versus CP eigenstates
 - Important for β and γ
 - Learn about Strong Interactions, esp. final state interactions
- Lots of new CLEO-c results. Only time for the high-lights

What We Hope to Learn - II

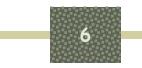
- Search for New Physics in Charm Sector
 - Very low SM rates for loop processes provide unique window to observe NP in rare charm processes (rare decays, CPV & mixing)
 - NP can introduce new particles into loop
 - Different sensitivity to NP than B and K sectors
 - Particles & couplings in rare charm processes are NOT the same as in rare B, K
 - Rare Charm Decays
 - FCNC decays only occur in loop diagrams in SM: heavily GIM suppressed: $BF(c \rightarrow ull) \sim 10^{-8}$
 - Charm Mixing
 - Mixing is Double Cabibbo suppressed & GIM mechanism suppressed
 - In SM $x = \Delta m / \Gamma \le y = \Delta \Gamma / 2\Gamma$
 - Short distance 10⁻⁶ 10⁻³, Long distance 10⁻³ 10⁻²
 - New physics in loops implies x >> y; long range effects complicate predictions.
 - Large CPV in mixing indicates NP
 - CP Violation Direct
 - CF & DCS decay: Direct CPV requires New Physics
 - Exception: interference between CF & DCS amplitudes to $D^{\pm} \rightarrow K_{S,L}\pi^{\pm}$
 - SM contribution due to K⁰ mixing is $A_s = [+]_s [-]_s \sim -3.3 \times 10^{-3}; A_s = -A_L$
 - New Physics could be ~%
 - SCS decay
 - expect $O(\lambda^4) \sim 10^{-3}$ from CKM matrix
 - New Physics could be ~%
- No new CLEO-c results. I'll mention prospects for BESIII in conclusion


Absolute Charm Branching Fractions

David Asner


9 Oct 2006.

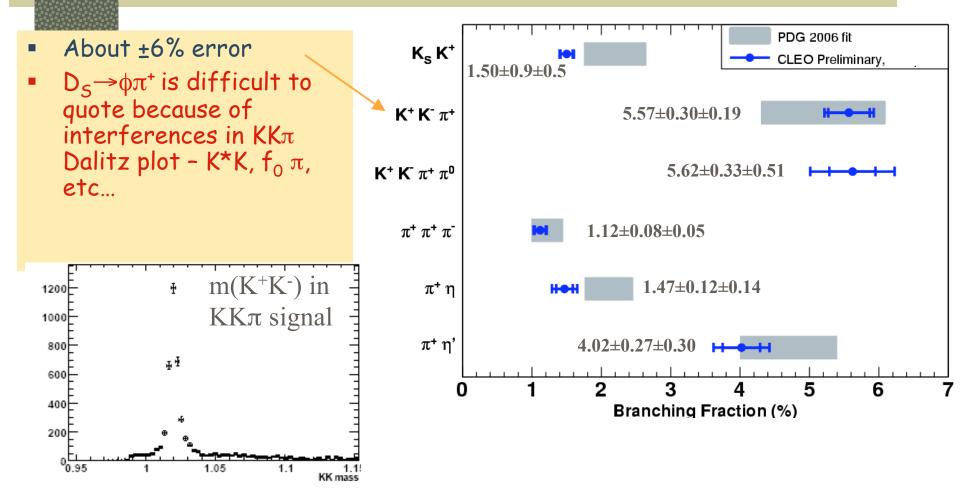
E_{cm} (GeV)



CLEO-c D_{S}^{+} Results at 4170 MeV

Total # of Tags = 19185 ± 325 (stat)

David Asner



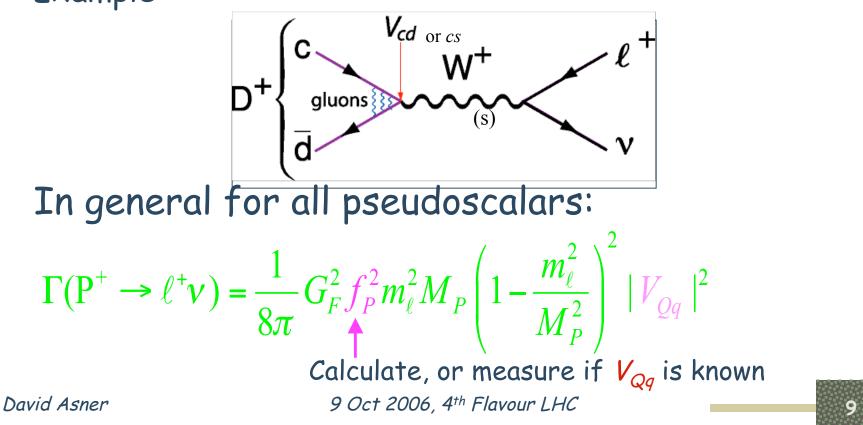
Single & Double D_{S}^+ Tags in 200 pb⁻¹

			Single	e tags			
-	$K_S K^+$	K^-K^+					$\tau^+\eta'$
	D_s^+ 1054.8 ± 3 D_s^- 927.8 ± 3						8 ± 23.4 5 ± 23.6
=	D _S 521.0 ± 5	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>					
			Double tags				
		K_SK^-	$K^+K^-\pi^-$	$K^+K^-\pi^-\pi^0$	$\pi^-\pi^-\pi^+$	$\pi^-\eta$	$\pi^-\eta'$
	K_SK^+	7.7	27.0	18.7	7.3	4.0	5.0
	$K^-K^+\pi^+$	18.0	104.7	43.7	30.7	12.0	8.0
	$K^-K^+\pi^+\pi$	τ ⁰ 8.7	35.7	14.0	13.3	1.0	5.7
	$\pi^+\pi^+\pi^-$	3.3	22.7	16.0	13.3	4.7	4.0
	$\pi^+\eta$	0.0	10.0	2.7	6.0	1.0	1.7
	$\pi^+\eta'$	3.0	10.0	3.0	3.7	1.0	0.0
			2.06		KA	l double tags	
Clean double tag signal			Cech 2.02 2.02 2.02 1.98 1.98 1.94 1.92 1.92 1.92 1.92		()) 160 160 160 100 120 100 100 100 100 100 10		
David Asn	er	90	1.88 1.9 1.9 Dct 2	2 1.94 1.96 1.98 2 2.02 2.04 2.03 3 ass DS+ (GeV)		D _S ⁺ -mas	(D') (GeV/c ²) SSD _S

Absolute \mathcal{B} Results for D_{S}^+ 200 pb⁻¹

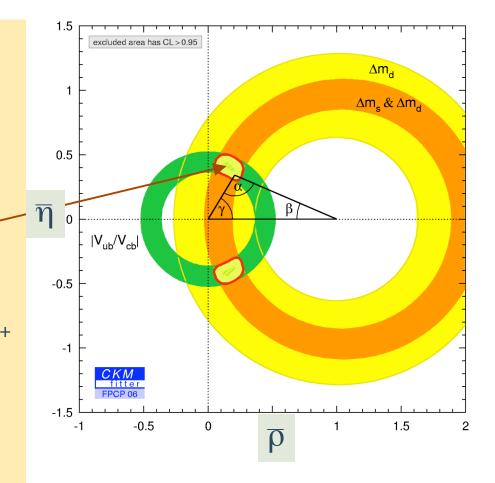
• Partial branching fraction ± 10 MeV around $m(\phi)$: **1.98\pm0.12\pm0.09 %** ± 20 MeV around $m(\phi)$: **2.25\pm0.13\pm0.12 %** (need x2 for $\phi \rightarrow K^+K^-$)

David Asner


9 Oct 2006, 4th Flavour LHC

8

Leptonic Decays: $D_{(s)} \rightarrow \ell^+ v$


Introduction: Pseudoscalar decay constants c and q can annihilate, probability is \propto to wave function overlap

Example :

Goals in Leptonic Decays

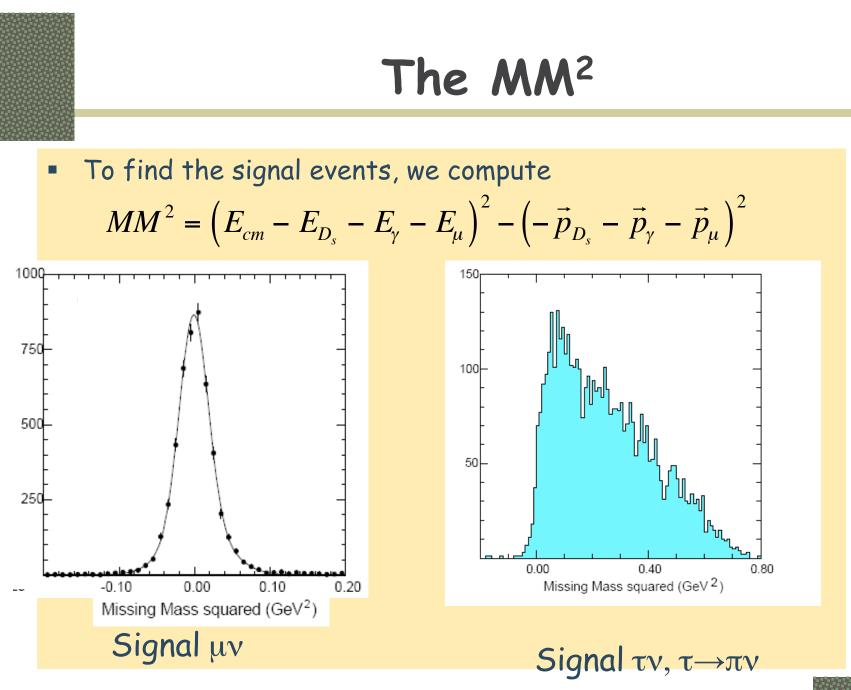
- Test theoretical calculations in strongly coupled theories in nonperturbative regime
- f_B & f_{Bs}/f_B needed to improve constraints from
 Δm_d & Δm_s/Δm_d. Hard to measure directly (i.e. B →τ⁺ v measures V_{ub}f_B), but we can determine f_D & f_{Ds} using D→ℓ⁺v and use them to test theoretical models (i.e. Lattice QCD)

Constraints from V_{ub} , Δm_d , Δm_s & B $\rightarrow \tau + \nu$

10

David Asner

9 Oct 2006, 4th Flavour LHC


New Measurements of f_{Ds}

Two separate techniques

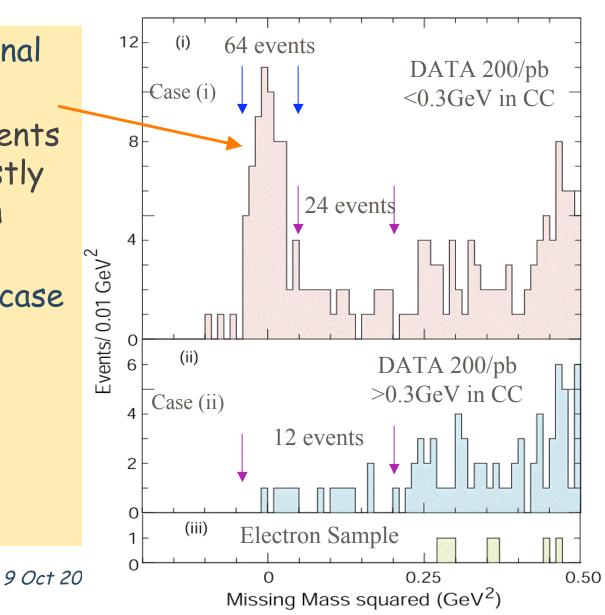
- (1) Measure $D_{S}^{+} \rightarrow \mu^{+}\nu$ along with $D_{S} \rightarrow \tau^{+}\nu, \tau \rightarrow \pi^{+}\nu$.
 - Requires finding a D_5^- tag, a γ from either $D_s^{*-} \rightarrow \gamma D_s^-$ or $D_s^{*+} \rightarrow \gamma \mu^+ \nu$. Then finding the muon or pion using kinematical constraints
- (2) Find $D_{S}^{+} \rightarrow \tau^{+}\nu, \tau \rightarrow e^{+}\nu\nu$ opposite a D_{s}^{-} tag

(1) Measurement of $D_S^+ \rightarrow \mu^+ \nu$

- Use $D_s^*D_s$ events with detected γ from $D_s^* \rightarrow \gamma D_s$ decay
- Reconstruct all particles from $e^+e^- \rightarrow D_5^*D_5$, γ , $D_5(tag) + \mu^+$ except for the ν
- Kinematic fit (i) improves resolution & (ii) remove ambiguities
 - Constraints include: total p & E, tag D_S mass, $\Delta m=M(\gamma D_S)-M(D_S)$ [or $\Delta m=M(\gamma \mu \nu)-M(\mu \nu)$] = 143.6 MeV, E of D_S (or D_S*) fixed
 - Lowest χ^2 solution in each event is kept. No χ^2 cut is applied

David Asner

9 Oct 2006, 4th Flavour LHC


Define Three Classes

- Class (i), single track deposits < 300 MeV in calorimeter (consistent with μ) & no other γ
 > 300 MeV. (accepts 99% of muons and 60% of kaons & pions)
- Class (ii), single track deposits > 300 MeV in calorimeter & no other γ > 300 MeV (accepts 1% of muons and 40% of kaons & pions)
- Class (iii) single track consistent with electron & no other γ > 300 MeV

MM² Results from 200 pb⁻¹

- Clear D_S⁺→µ⁺v signal for case (i)
- Will show that events <0.2 GeV² are mostly $D_S \rightarrow \tau^+ \nu, \tau \rightarrow \pi^+ \nu$ in cases (i) & (ii)
- No D_S→e⁺v seen, case
 (iii)

David Asner

Sum of $D_{S}^{+} \rightarrow \mu^{+}\nu + \tau^{+}\nu$, $\tau \rightarrow \pi^{+}\nu$

Two sources of background

- A) Backgrounds under invariant mass peaks - Use sidebands to estimate
 - In μ⁺ν signal region 2 background (64 signal)
 - Sideband bkgd 5.5±1.9
- B) Backgrounds from real D_S decays, e.g.
 - $\pi^+\pi^0\pi^0$, or $D_S \rightarrow \tau^+\nu, \tau \rightarrow \pi^+\pi^0\nu$... with MM² < 0.2 GeV²
 - none in $\mu\nu$ signal region.
 - Total of 1.3 additional events.
 - $B(D_S \rightarrow \pi^+ \pi^{\circ}) < 1.1 \times 10^{-3} < 0.1 \text{ evts}$
- Total background < 0.2 GeV² is
 6.8 events, out of the 100

15

David Asner

9 Oct 2006, 4th Flavour LHC

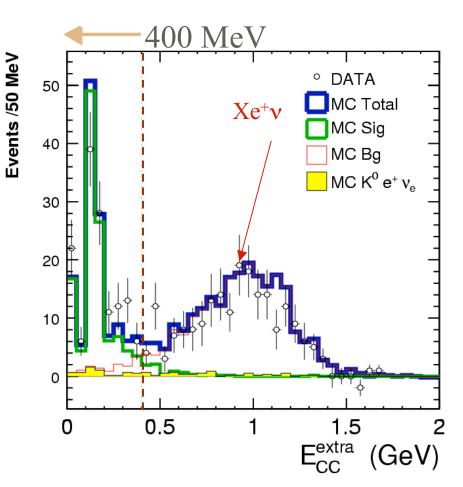
Branching Ratio & Decay Constant

 $D_{S}^{+} \rightarrow \mu^{+} \nu$

- = 64 signal events, 2 background, use SM to calculate τv yield near 0 MM² based on known $\tau v/\mu v$ ratio
- $B(D_{S}^{+} \rightarrow \mu^{+}\nu) = (0.657 \pm 0.090 \pm 0.028)\%$

•
$$D_{S}^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \pi^{+} \nu$$

 Sum case (i) 0.2 > MM² > 0.05 GeV² & case (ii) MM² < 0.2 GeV². Total of 36 signal and 4.8 bkgrnd

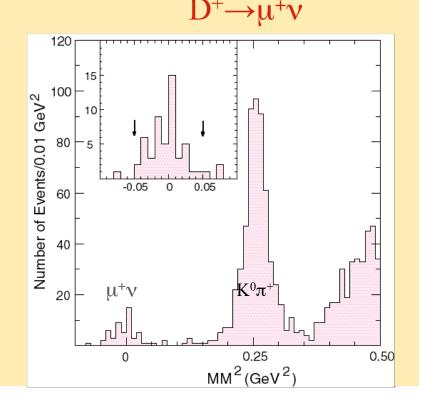

•
$$B(D_{S}^{+} \rightarrow \tau^{+} \nu) = (7.1 \pm 1.4 \pm 0.03)\%$$

- By summing both cases above, find $B^{eff}(D_{s}^{+}\rightarrow \mu^{+}\nu) = (0.664\pm 0.076\pm 0.028)\%$
- f_{Ds}=282 ± 16 ± 7 MeV
- $B(D_{S}^{+} \rightarrow e^{+}v) < 3.1 \times 10^{-4}$

Measuring $D_{S}^{+} \rightarrow \tau^{+}\nu, \tau^{+} \rightarrow e^{+}\nu\nu$

- $B(D_{s}^{+} \rightarrow \tau^{+}\nu) \bullet B(\tau^{+} \rightarrow e^{+}\nu\nu) \sim 1.3\%$ is "large" compared with expected $B(D_{s}^{+} \rightarrow Xe^{+}\nu) \sim 8\%$
- Technique is to find events with an e⁺ opposite D_S⁻ tags & no other tracks, with ∑ calorimeter energy < 400 MeV
- No need to find γ from D_s^*
- $B(D_{S}^{+} \rightarrow \tau^{+} \nu) =$ (6.29±0.78±0.52)%
- f_{Ds}=278 ± 17 ± 12 MeV

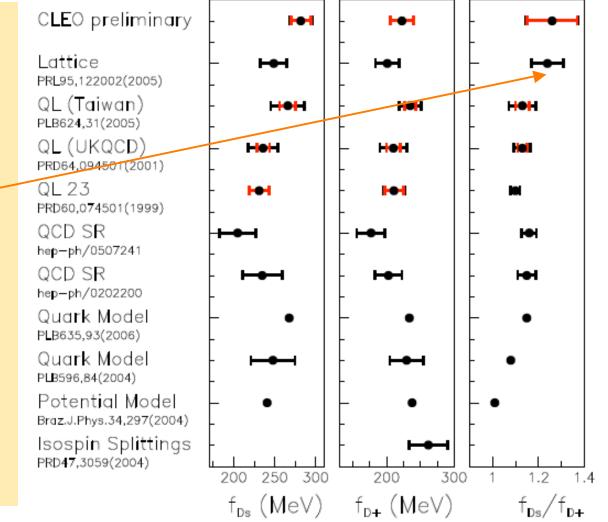
David Asner


f_{Ds} & f_{Ds}/f_D

- Weighted Average: f_{Ds}=280.1±11.6±6.0 MeV, the systematic error is mostly uncorrelated between the measurements (More data is on the way & systematic errors are being addressed)
- Previously CLEO-c measured
 M. Artuso et al., Phys .Rev. Lett. 95 (2005) 251801

$$f_{D^+} = (222.6 \pm 16.7^{+2.3}_{-3.4}) \text{ MeV}^{\dagger}$$

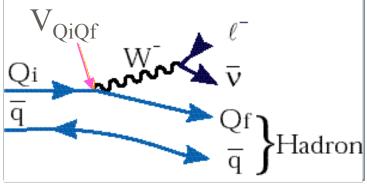
- Thus $f_{Ds}/f_{D^+}=1.26\pm0.11\pm0.03$
- $\Gamma(D_{S}^{+} \rightarrow \tau^{+} \nu) / \Gamma(D_{S}^{+} \rightarrow \mu^{+} \nu) =$ 9.9±1.7±0.7, SM=9.72,


consistent with lepton universality

Comparisons with Theory

- Consistent with most models, more precision needed
- Using Lattice ratio find |V_{cd}/V_{cs}|= 0.22±0.03
- CLEO-c is most precise result to date for both f_{Ds} & f_D+

Goals in Semileptonic Decays


- Either take V_{cq} from other information & test theory, or use theory & measure V_{cq}
 - V_{cs} use D→K(K*)Iv to measure form-factor shapes to distinguish among models & test lattice QCD predictions
 - V_{cd} use $D \rightarrow \pi(\rho) I_V$
- $V_{cd} \& V_{cs}$ with precise unquenched lattice calc + V_{cb} would provide an important unitarity check
- Use $D \rightarrow \pi l v$ (& $\rho l v$) to get form-factor for $B \rightarrow \pi l v$ (& $\rho l v$) and use HQET to get V_{ub}

Exclusive Semileptonic Decays

• Best way to determine magnitudes of CKM elements, in principle is to use semileptonic decays. Decay rate $\alpha |V_{\text{QiQf}}|^2$

• How $V_{us}(\lambda)$ and $V_{cb}(A)$ have been determined

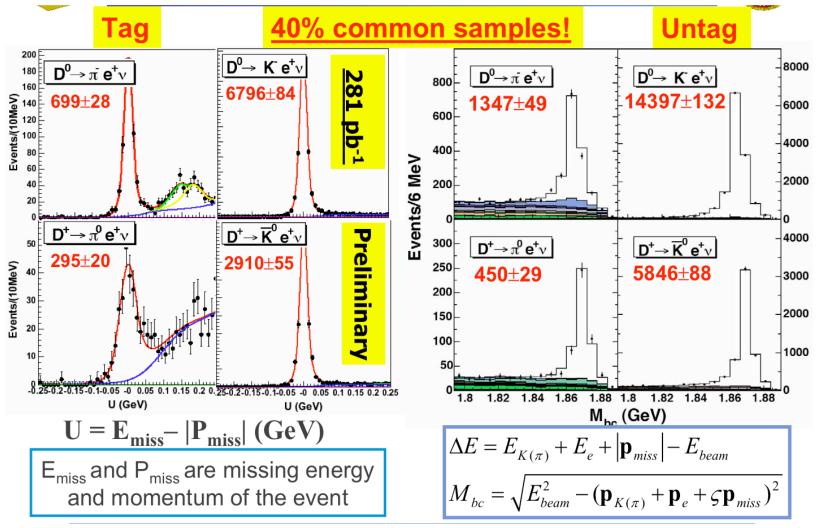
9 Oct

Kinematics:

$$q^{2} = \left(p_{D}^{\mu} - p_{hadron}^{\mu}\right)^{2} = m_{D}^{2} + m_{P}^{2} - 2E_{P}m_{L}^{2}$$

 Matrix element in terms of form-factors (for D→ Pseudoscalar l+v

$$\langle P(P_P) | J_{\mu} | D(P_D) \rangle = f_+(q^2)(P_D + P_P)_{\mu} + f_-(q^2)(P_D - P_P)_{\mu}$$


• For
$$\lambda = e$$
, $f_{-}(q^2) \rightarrow 0$:

David Asner

$$\frac{d\Gamma(D \rightarrow Pev)}{dq^2} = \frac{\left|V_{cq}\right|^2 P_p^3}{24\pi^3} \left|f_+(q^2)\right|^2$$

$D^0/D^+ \rightarrow K/\pi ev$ Tag & Untag

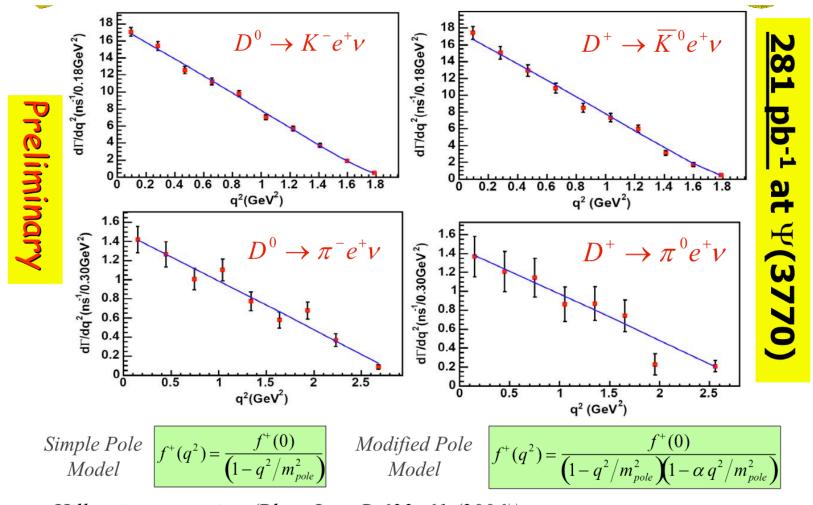
David Asner

$D^0/D^+ \rightarrow K/\pi ev BF$ (Tag & Untag)

40% common samples, do NOT average them!

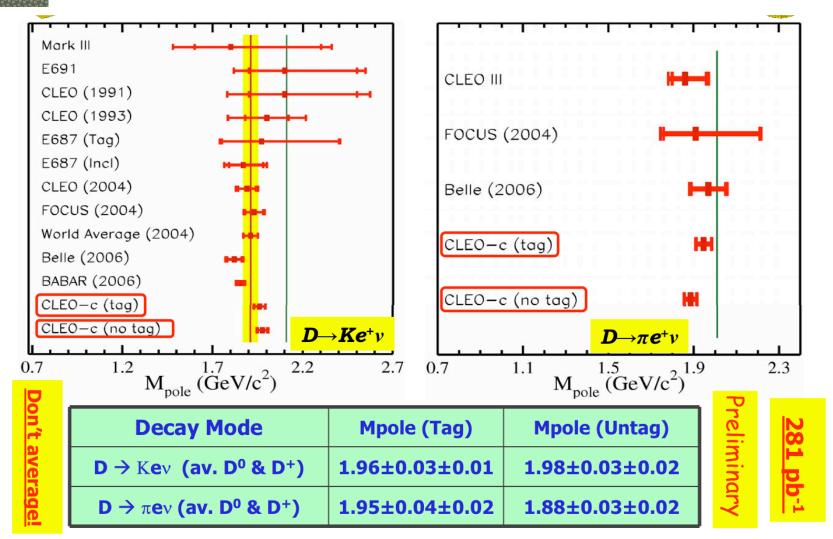
D Decay	Tag Br. Frac. (%) Untag	PDG (%)	
$D^0 \to K^- e^+ \nu$	3.58±0.05±0.05 3.56±0.03±0.11	3.62±0.16	28
$D^0 \rightarrow \pi^- e^+ v$	0.309±0.012±0.006 0.301±0.011±0.010	0.311±0.030	
$D^+ \to \overline{K}^0 e^+ v$	8.86±0.17±0.20 8.75±0.13±0.30	7.2±0.8	b -1
$D^+ \rightarrow \pi^0 e^+ v$	0.397±0.027±0.028 0.383±0.025±0.016	0.38±0.19	

Ratio	Measured (%)	PDG (%)	Ratio	Measured		Pre
$\frac{D^0 \to \pi^- e^+ \nu}{D^0 \to K^- e^+ \nu}$	8.5±0.3±0.1	8.6±0.7	$\frac{\Gamma(D^0 \to \pi^- e^+ \nu)}{\Gamma(D^+ \to \pi^0 e^+ \nu)}$	1.95±0.15±0.14 1.99±0.15±0.10		limir
$\frac{D^{+} \rightarrow \pi^{0} e^{+} \nu}{D^{+} \rightarrow \bar{K}^{0} e^{+} \nu}$	4.4±0.3±0.1	4.6±1.4±1.7	$\frac{\Gamma(D^0 \to K^- e^+ \nu)}{\Gamma(D^+ \to \bar{K}^0 e^+ \nu)}$	1.02±0.02±0.02 1.03±0.02±0.04	•	lary


David Asner

9 Oct 2006, 4th Flavour LHC

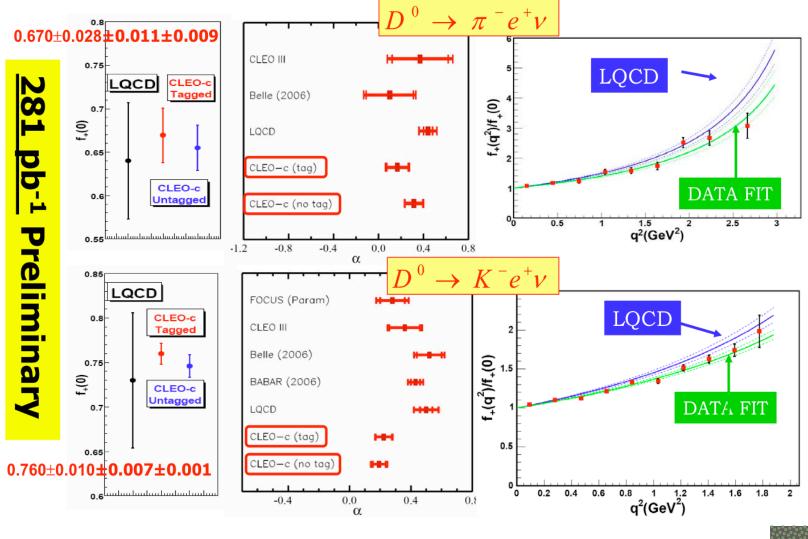
Form Factor Fit (Tag)


Hill series expansion (Phys. Lett. B 633, 61 (2006))

David Asner

9 Oct 2006, 4th Flavour LHC

Form Factors (Tag/Untag)



David Asner

Form Factors & Test of LQCD

David Asner

9 Oct 2006, 4th Flavour LHC

V_{cs} and V_{cd} Results

Combine $|V_{cx}|f_{+}(0)$ values from fits with unquenched LQCD results for $f_{+}(0)$ (Phys. Rev. Lett. 94, 011601 (2005)) to extract $|V_{cs}|$ and $|V_{cd}|$.

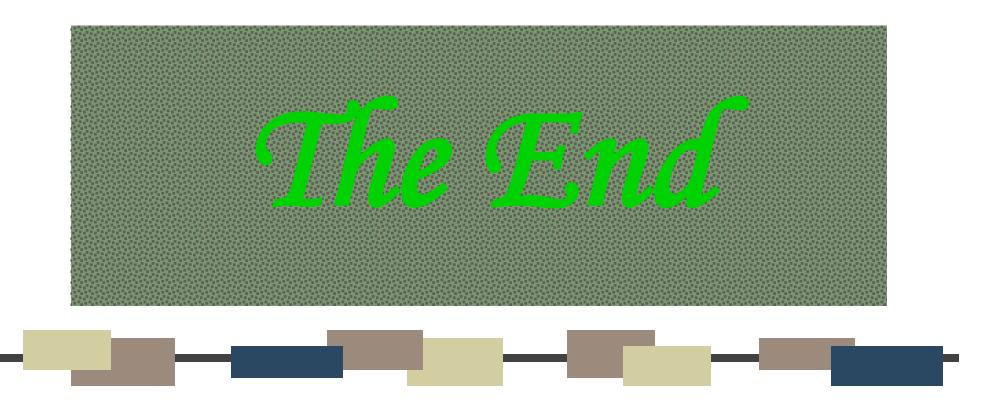
Decay Mode	$ V_{cx} \pm (stat) \pm (syst) \pm (theory)$	PDG Value	Pr
$D \rightarrow \pi e_{V}$ (tag)	$0.234 \pm 0.010 \pm 0.004 \pm 0.024$		eli
$D \rightarrow \pi e_{\nu}$ (untag)	$0.229 \pm 0.007 \pm 0.005 \pm 0.024$	0.224 ± 0.012	Bi
$D \rightarrow Ke_V$ (tag)	$1.014 \pm 0.013 \pm 0.009 \pm 0.106$		nal
$D \rightarrow Ke_{V}$ (untag)	$0.996 \pm 0.008 \pm 0.015 \pm 0.104$	0.976 ± 0.014	Y

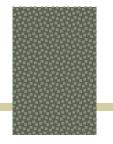
Tag/Untag: 40% of comment sample.DO NOT AVERAGE!!!Expt. uncertaintiesVcs <2% Vcd~4%</td>LQCD uncertainty 10%

Since Vcs (W \rightarrow cs LEP) and Vcd (vN) are well measured, good agreement between PDG and CLEO-c results is primarily a check of the LQCD value for $f_+(0)$. Nevertheless, the most precise & robust Vcs & Vcd determinations using semileptonic decays to date.

Looking forward to 2010

Where will Charm physics be in 2010?


- Hadronic Branching Ratios
 - D⁰ and D+ branching ratios systematics limited at (1-2)% CLEO-c
 - D_s⁺ branching ratios statistics limited at 6% CLEO-c
 - CLEO-c will improve to ~4%
 - BESIII will improve to (1-2)%
- Decay constants: statistics limited
 - D⁺ 7.5% for 281 pb⁻¹ at 3770. CLEO-c
 - CLEO-c will improve to (4-5)%
 - BESIII will improve to (1-2)%
 - Ultimate systematic limit may be ~1%
 - D_s 4.1% for 200 pb⁻¹ at 4170. CLEO-c
 - CLEO-c will improve to (2-3)%
 - BESIII can improve
 - Ultimate systematic limit may be ~2%
- Semileptonic Decays
 - Branching ratio of Cabibbo favored D⁰→Kev known to 2% CLEO-c
 - Branching ratio of Cabibbo suppressed $D^0 \rightarrow \pi e_V$ known to 4% CLEO-c
 - CLEO-c will improve to (2-3)%
 - BESIII can improve
 - Ultimate systematics limit for Semileptonic BR may be 1-2%
 - Vcs ~ 2%, Vcd~4% CLEO-c
 - CLEO-c will improve Vcd~2%


David Asner Form-factors will need 10 fb⁻¹ BEFEFO6, 4th Flavour LHC

- CP tagged Dalitz plot analyses e.g. $D^{\circ} \rightarrow CP$ vs. $D^{\circ} \rightarrow K_{S} \pi^{+} \pi^{-}$ Important for γ
 - Statistics starved until at least~10 fb⁻¹
 - CLEO-c can limit sys err on γ < 3°
- Rare Decays
 - CLEO-c sensitivity 10⁻⁵-10⁻⁶
 - BESIII sensititity 10⁻⁶-10⁻⁷
 - Standard Model rates ~10⁻⁸
 - Need Super Flavor Factory @ ~4 GeV
- Charm Mixing
 - Exploiting the quantum coherent initial state CLEO-c will measure cosô ~ ±0.1
 - **BESIII** sensitivity to $y=\Delta\Gamma/2\Gamma$ few x 10⁻³
 - Need (Upgraded) LHC-b or Super B to cover full range of SM expectations
- CP Violation
 - **BESIII** sensitive to asymmetery in $D^+ \rightarrow K_{S,L}\pi +$ ~few x 10⁻³. Approximately SM expectation.
 - Need (Upgraded) LHC-b or Super B to reach SM expectation in SCS decays.

CLEO-c will complete most measurements needed for precision CKM. New Physics searches require more statistics than anticipated at BESIII

Form-Factor Parameterizations

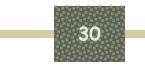
In general

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{1-\alpha} \frac{1}{1-q^{2}/m_{pole}^{2}} + \frac{1}{\pi} \int_{(M_{D}+m)^{2}}^{\infty} dq'^{2} \frac{\operatorname{Im}(f(q'^{2}))}{q'^{2}-q^{2}}$$

Modified Pole

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - q^{2}/m_{pole}^{2}\right)\left(1 - \alpha q^{2}/m_{pole}^{2}\right)}$$

Series Expansion


$$f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2},t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0})[z(q^{2},t_{0})]^{k}$$

$$t_{\pm} = \left(M_D \pm m_{\pi(K)}\right)^2, \quad z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

Hill & Becher, Phys. Lett. B 633, 61 (2006)

David Asner

9 Oct 2006, 4th Flavour LHC

