Lepton number violation in dimuon production at LHC

F. del Aguila ¹, J.A. Aguilar-Saavedra ¹ and R. Pittau ²

 Departamento de Física Teórica y del Cosmos Universidad de Granada
 Dipartimento di Fisica Teorica, Università di Torino and INFN. Sezione di Torino

Flavour in the era of the LHC CERN, October 10, 2006

Heavy neutrinos at collider scale:

Theoretically challenging

Experimentally "easy"*

^{* &}quot;easy": Easier than light neutrinos. But not as easy as one might think.

Theoretical challenges

Seesaw contributions $m_{\nu} \sim Y^2 v^2/m_N$ to light neutrino masses

- either *Y* very small (*N* decoupled from the light sector)
- or cancellation with another source for light neutrino masses

Need to decouple mixing angles from mass ratios

Usual seesaw:
$$m_{\nu} \sim \frac{Y^2 v^2}{m_N}$$
, $V \sim \frac{Y v}{m_N} \quad \Rightarrow \quad V \sim \sqrt{\frac{m_{\nu}}{m_N}}$

Both difficulties can be solved but require symmetries

Direct production and detection through mixing with Standard Model leptons

- No production through the exchange of "Right-Handed" gauge bosons
 [Gninenko et al., CMS Note '06]
- No indirect signal as in "inverse see-saw" models with invisible Higgs decays $h \rightarrow JJ$ [Bazzocchi, Valle '06]

No LHC related signals as in R-parity models of light neutrino mixing with characteristic neutralino decays [Porod et al., '01]

Then, why *N* at TeV scale?

Seesaw simple and beautiful, but... $m_N \sim 10^{14}$ GeV unobservable

Attempts to construct models with *N* at a lower scale and observable

Examples:

- Little Higgs models [Aguila, Masip, Padilla, PLB '05] Pseudo-Dirac neutrinos with $m_N \sim 1$ TeV, mixing $\sim v/f$, with $f \sim 1$ TeV
- τ leptogenesis [Pilaftsis, Underwood, PRD '05] Pseudo-Dirac neutrino $m_N \sim 250$ GeV, mixing $V \sim 10^{-2}$,
- More examples welcome...

Summary

- Overview of the model
- 2 Constraints on light-heavy mixing
- 3 Overview of *N* production at colliders
- 4 Single *N* production at LHC

Overview of the model

We consider the possibility of Heavy Majorana or Dirac neutrinos

We introduce additional neutrino fields $\begin{bmatrix} N'_{iL}, \nu'_{iR}, N'_{iR} & \text{Dirac} \\ N'_{iR} & \text{Majorana} \end{bmatrix}$

We do not introduce extra interactions:

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \bar{l}'_{L} \gamma^{\mu} \nu'_{L} W_{\mu} + \text{H.c.}$$

$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \bar{\nu}'_{L} \gamma^{\mu} \nu'_{L} Z_{\mu}$$

$$\mathcal{L}_{H} = -\frac{1}{\sqrt{2}} \bar{\nu}'_{L} Y N'_{R} H + \text{H.c.}$$

with $\nu'_{iR} \equiv (\nu'_{iL})^c$, $N'_{iL} \equiv (N'_{iR})^c$ in the Majorana case

These heavy N are not

- $SU(2)_R$ doublet neutrinos
- "Excited neutrinos" ν^*

and their interactions are obtained by mixing O(1) or smaller with light neutrinos

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \left(\bar{\ell} \gamma^{\mu} V_{\ell N} P_{L} N W_{\mu} + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \ell W_{\mu}^{\dagger} \right)$$

$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \left(\bar{\nu}_{\ell} \gamma^{\mu} V_{\ell N} P_{L} N + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \nu_{\ell} \right) Z_{\mu}$$

$$\mathcal{L}_{H} = -\frac{g m_{N}}{2M_{W}} \left(\bar{\nu}_{\ell} V_{\ell N} P_{R} N + \bar{N} V_{\ell N}^{*} P_{L} \nu_{\ell} \right) H$$

With additional interactions, additional (larger) signals

N decays:

$$N \to W^+ \ell^-$$
 plus $N \to W^- \ell^+$ (M)

- For equal $|V_{\ell N}|$, the total width of a Majorana neutrino is two times larger than for a Dirac neutrino
- For $m_N \gg M_Z, M_W, M_H$

$$\Gamma(N \to W^{\pm} \ell^{\mp}) : \Gamma(N \to Z \nu_{\ell}) : \Gamma(N \to H \nu_{\ell}) = 2 : 1 : 1$$

Constraints on light-heavy mixing

Mixing angles $V_{\ell N}$ constrained by three kinds of processes:

- Tree-level processes measuring $\ell\nu_{\ell}W$, $\nu_{\ell}\nu_{\ell}Z$ couplings: $\pi \to \ell\nu_{\ell}, Z \to \nu\bar{\nu}...$
- LFV processes to which *N* can contribute at one loop: $\mu \rightarrow e\gamma$, $Z \rightarrow \ell\ell'$...
- Neutrinoless double beta decay → Majorana only

Processes in first, second group constrain the quantities

$$\Omega_{\ell\ell'} \equiv \delta_{\ell\ell'} - \sum_{i=1}^{3} V_{\ell\nu_i} V_{\ell'\nu_i}^* = \sum_{i=1}^{3} V_{\ell N_i} V_{\ell'N_i}^*$$

First group of processes

$$\sum_{i} |V_{eN_i}|^2 \leq 0.0054$$

$$\sum_{i} |V_{\mu N_i}|^2 \leq 0.0096$$

$$\sum_{i} |V_{\tau N_i}|^2 \leq 0.016$$

model-independent cannot be evaded [Bergmann, Kagan NPB '99] [Tommasini et al., NPB '95]

Second group of processes

$$\sum_{i} V_{eN_{i}} V_{\mu N_{i}}^{*} \leq 0.0001$$

$$\sum_{i} V_{eN_{i}} V_{\tau N_{i}}^{*} \leq 0.01$$

$$\sum_{i} V_{\mu N_{i}} V_{\tau N_{i}}^{*} \leq 0.01$$

model-dependent cancellations possible

First group of processes

$$\sum_{i} |V_{eN_i}|^2 \leq 0.0054$$

$$\sum_{i} |V_{\mu N_i}|^2 \leq 0.0096$$

$$\sum_{i} |V_{\tau N_i}|^2 \leq 0.016$$

model-independent cannot be evaded

[Bergmann, Kagan NPB '99] [Tommasini et al., NPB '95]

Second group of processes

$$\sum_{i} V_{eN_{i}} V_{\mu N_{i}}^{*} \leq 0.0001$$

$$\sum_{i} V_{eN_{i}} V_{\tau N_{i}}^{*} \leq 0.01$$

$$\sum_{i} V_{\mu N_{i}} V_{\tau N_{i}}^{*} \leq 0.01$$

model-dependent cancellations possible

[Bergmann, Kagan NPB '99] [Tommasini et al., NPB '95]

First group of processes

$$\sum_{i} |V_{eN_{i}}|^{2} \leq 0.0054$$

$$\sum_{i} |V_{\mu N_{i}}|^{2} \leq 0.0096$$

$$\sum_{i} |V_{\tau N_{i}}|^{2} \leq 0.016$$

model-independent cannot be evaded

Second group of processes

$$\sum_{i} V_{eN_{i}} V_{\mu N_{i}}^{*} \leq 0.0001$$

$$\sum_{i} V_{eN_{i}} V_{\tau N_{i}}^{*} \leq 0.01$$

$$\sum_{i} V_{\mu N_{i}} V_{\tau N_{i}}^{*} \leq 0.01$$

model-dependent cancellations possible

Neutrinoless double beta decay constrains $\sum_{i=1}^{3} \frac{V_{eN_i}^2}{m_{N_i}}$

- cancellations possible (e.g. pseudo-Dirac)
- For $V_{eN}^2 = 0.0054$ and no cancellations $m_N \gtrsim 1 \text{ TeV}$ (with theoretical uncertainties on nuclear matrix element)

Overview of *N* production at colliders

Heavy *N* can lead to three classes of signals:

- Lepton number violating (LNV): Requires Majorana N
 (can also violate flavour)
- Lepton flavour violating (LFV): Requires *N* (D / M) coupling with more than one charged lepton
- Lepton number and flavour conserving (LNC, LFC): always present

Backgrounds grow from top to bottom

Overview of N production at colliders

At LHC:

•
$$pp \rightarrow \ell N$$
 (LNV)

[Aguila, JAAS, Pittau]

At e^+e^- colliders:

•
$$e^+e^- \rightarrow N\nu$$
 (LNC, LFC)

•
$$e^+e^- \to \ell NW$$
 (LNV)

• N pair production
$$e^+e^- \rightarrow NN$$

[Gluza, Zrałek, PRD '97]

[Aguila, JAAS, Pittau, '06]

suppressed by mixing and phase space

Other future heavy neutrino signals

Apart from LHC and e^+e^- colliders:

- $e^- \gamma \to NW^- \to \ell^+ W^- W^-$ [Bray, Lee, Pilaftsis '05] Similar limits on V_{eN} as ILC? (Detailed analysis needed, background reduction relies on p_t cut)
- $e^- \gamma \to N \mu^- \nu \to W^+ \mu^- \mu^- \nu$ [Bray, Lee, Pilaftsis '05] Sensitive to $m_N = 200$ GeV, $V_{\mu N} \sim 0.1$ even with $V_{eN} = 0$ (parton-level analysis)
- $ep \rightarrow Nj$ (LNV) [Buchmuller, Greub '91]

Other future heavy neutrino signals

Indirect signals:

• $Z \rightarrow \ell^+ \ell'^-$ at ILC

[Illana, Riemann PRD '01]

- $\mu \rightarrow e\gamma$, μe conversion...
- CP violation in neutrino oscillations

[Bekman et al., PRD '02]

Single *N* production at LHC

Two processes:

•
$$u\bar{d} \to W^+ \to \ell^+ N$$
 (and $d\bar{u} \to W^- \to \ell^- N$)

•
$$q\bar{q} \rightarrow Z \rightarrow \nu N$$

Huge backgrounds for LNC & LFC final states

start with ℓN production and LNV decay

$$pp \to \ell^{\pm}\ell^{\pm}jj$$

 $(\ell = e, \mu)$ and see what happens

Backgrounds

Final state $\ell^{\pm}\ell^{\pm}jj$ is LNV \rightarrow

Naively, this implies no or very small background

BUT in real world there IS background

Obvious ones: WZjj, with $W \to \ell \nu, Z \to \ell^+ \ell^-$, lose one $W^\pm W^\pm jj$, with both $W \to \ell \nu$

Not so obvious: $t\bar{t}$ semileptonic, with additional lepton from b, \bar{b} (plus $Wb\bar{b}, Zb\bar{b}$)

Backgrounds

Bad news 🙁

- Pile-up exists: e.g. not only WZjj, but also WZ, WZj contribute
- Higher orders exist: WZ3j...also contribute (cannot be removed due to pile-up on signal)

Further bad news 22

• $t\bar{t}$, $Wb\bar{b}$, $Zb\bar{b}$ backgrounds large for $\ell=e$ (10× than for $\ell=\mu$) Seen with fast simulation, must be confirmed with full simulation

Details of the simulation

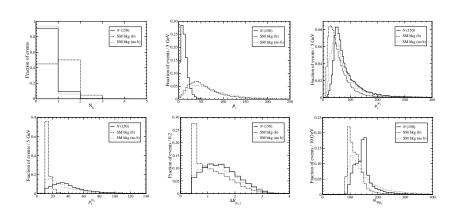
Restrict ourselves to $\mu^{\pm}\mu^{\pm}jj$ signal

All processes (including N production) generated with ALPGEN

Backgrounds: tīnj, Wbbnj, Zbbnj, WWnj, WZnj, ZZnj,

WWWnj, WWZnj, WZZnj, ZZZnj

generated with $n = 0...3 (0...5 \text{ for } t\bar{t})$


and matched with PYTHIA 6.4 using the MLM prescription

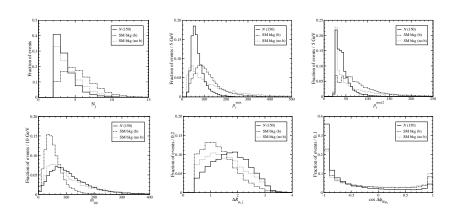
Fast detector simulation with ATLFAST

Events for 30 fb^{-1}			$m_N = 150 \text{ GeV}, V_{\mu N} ^2 = 0.0096$		
<mark>N</mark> μ tīnj WZnj Wb̄bnj WWnj	92.9 2294.4 615.5 763.8 316.4	↑ ↑ ↑ ↑ ↑	68.9 163.5 81.3 62.0 12.2		
estimation Cannot b	O times larged times in literate to the suppressents on p_t , Δ	iture ed wit	ih	Significance: 0.88σ Previous "estimate": 17σ	

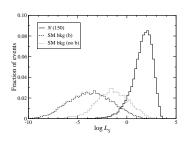
Events for 30 fb^{-1}			$m_N = 150 \text{ GeV}, V_{\mu N} ^2 = 0.0096$		
<mark>Nμ</mark> t̄tnj WZnj Wb̄bnj WWnj	92.9 2294.4 615.5 763.8 316.4	^ ^ ^ ^ ^ ^ ^ ^	68.9 163.5 81.3 62.0 12.2	$ p_{t} \leq 25 \text{ GeV} $ $ \Delta R_{\mu j} \geq 0.5 $ one $m_{\mu jj} 120 - 150 \text{ GeV}$ $m_{jj} 60 - 100 \text{ GeV}$ [Han, Zhang '06]	
$10-100$ times larger than estimations in literature Cannot be suppressed with naive cuts on p_t , ΔR , $m_{\mu jj}$				Significance: 0.88σ Previous "estimate": 17σ	

Variables I

Events for 30 fb⁻¹
$$m_N = 150 \text{ GeV}, |V_{\mu N}|^2 = 0.0096$$
 $N\mu = 150 \text{ GeV}, |V_{\mu N}|^2 = 0.0096$


no extra μ
no b jets, ≤ 5 jets
 $p_t^{\mu_1} \geq 40 \text{ GeV}$
 $WZnj = 615.5 \rightarrow 12.4$
 $Wb\bar{b}nj = 763.8 \rightarrow 0.1$
 $p_t \leq 20 \text{ GeV}$
 $p_t^{\mu_2} \geq 20 \text{ GeV}$
 $p_t^{\mu_2} \geq 0.8$
 $p_t^{\mu_2} \geq 0.8$

B


with improved variable selection

Significance: 4.53σ

Variables II

Standard cuts on variables can reduce background... but signal too Build a signal likelihood function

Ol	$\log L_S/L_B \ge 1.75$ one $m_{\mu jj}$ 130 $-$ 170 GeV								
$N\mu$	92.9	→	38.3						
tīnj	2294.4	\rightarrow	1.5						
WZnj	615.5	\rightarrow	4.8						
$Wbar{b}nj$	763.8	\rightarrow	0.4						
WWnj	316.4	→	2.3						

Significance: 9.9σ for 30 fb^{-1} – Discovery up to 175 GeV (likely to be maintained with full simulation)

Conclusions I

- O LHC is sensitive to Majorana N coupling to muon
- Analysis involved, background can be reduced but not wiped out
- Discovery up to 175 GeV much lower than in previous (unrealistic) estimates due to backgrounds ~ 100 times larger
- O Full simulation must address μ charge misidentification
- Backgrounds larger for electrons due to detector effects. Full simulation possibly needed.
- τ : huge background (cannot see charge)
- O LFV signals have larger (e) or huge (τ) backgrounds
- Needless to say about LNC & LFC signals...

A closer look to heavy neutrino interactions

ℓNW vertex:

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \left(\bar{\ell} \gamma^{\mu} V_{\ell N} P_{L} N W_{\mu} + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \ell W_{\mu}^{\dagger} \right) \quad (D, M)$$

 $\nu_{\ell}NZ$ vertex:

$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \left(\bar{\nu}_{\ell} \gamma^{\mu} V_{\ell N} P_{L} N + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \nu_{\ell} \right) Z_{\mu}$$

$$= -\frac{g}{2c_{W}} \bar{\nu}_{\ell} \gamma^{\mu} \left(V_{\ell N} P_{L} - V_{\ell N}^{*} P_{R} \right) N Z_{\mu}$$
(M)

 $\nu_{\ell}NH$ vertex:

$$\mathcal{L}_{H} = -\frac{g \, m_{N}}{2M_{W}} \left(\bar{\nu}_{\ell} \, V_{\ell N} P_{R} N + \bar{N} \, V_{\ell N}^{*} P_{L} \nu_{\ell} \right) H \tag{D,M}$$

$$= -\frac{g \, m_{N}}{2M_{W}} \, \bar{\nu}_{\ell} \left(V_{\ell N} P_{R} + V_{\ell N}^{*} P_{L} \right) N H \tag{M}$$

A closer look to heavy neutrino interactions

 ℓNW vertex:

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \left(\bar{\ell} \gamma^{\mu} V_{\ell N} P_{L} N W_{\mu} + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \ell W_{\mu}^{\dagger} \right) \quad (D, M)$$

 $\nu_{\ell}NZ$ vertex:

$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \left(\bar{\nu}_{\ell} \gamma^{\mu} V_{\ell N} P_{L} N + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \nu_{\ell} \right) Z_{\mu}$$

$$= -\frac{g}{2c_{W}} \bar{\nu}_{\ell} \gamma^{\mu} \left(V_{\ell N} P_{L} - V_{\ell N}^{*} P_{R} \right) N Z_{\mu}$$
(M)

 $\nu_{\ell}NH$ vertex:

$$\mathcal{L}_{H} = -\frac{g \, m_{N}}{2M_{W}} \left(\bar{\nu}_{\ell} \, V_{\ell N} P_{R} N + \bar{N} \, V_{\ell N}^{*} P_{L} \nu_{\ell} \right) H \tag{D, M}$$

$$= -\frac{g \, m_{N}}{2M_{W}} \, \bar{\nu}_{\ell} \left(V_{\ell N} P_{R} + V_{\ell N}^{*} P_{L} \right) N H \tag{M}$$

A closer look to heavy neutrino interactions

 ℓNW vertex:

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \left(\bar{\ell} \gamma^{\mu} V_{\ell N} P_{L} N W_{\mu} + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \ell W_{\mu}^{\dagger} \right) \quad (D, M)$$

 $\nu_{\ell}NZ$ vertex:

$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \left(\bar{\nu}_{\ell} \gamma^{\mu} V_{\ell N} P_{L} N + \bar{N} \gamma^{\mu} V_{\ell N}^{*} P_{L} \nu_{\ell} \right) Z_{\mu}$$

$$= -\frac{g}{2c_{W}} \bar{\nu}_{\ell} \gamma^{\mu} \left(V_{\ell N} P_{L} - V_{\ell N}^{*} P_{R} \right) N Z_{\mu}$$
(M)

 $\nu_{\ell}NH$ vertex:

$$\mathcal{L}_{H} = -\frac{g \, m_{N}}{2M_{W}} \left(\bar{\nu}_{\ell} \, V_{\ell N} P_{R} N + \bar{N} \, V_{\ell N}^{*} P_{L} \nu_{\ell} \right) H$$

$$= -\frac{g \, m_{N}}{2M_{W}} \, \bar{\nu}_{\ell} \left(V_{\ell N} P_{R} + V_{\ell N}^{*} P_{L} \right) N H$$
(M)

Single N production at e^+e^- colliders

We select the decay channel $N \to \ell W \to \ell jj$ [Aguila, JAAS, JHEP '05]

Process: $e^+e^- \rightarrow \ell W \nu \rightarrow \ell j j \nu$ are large branching ratio final state reconstructed

at ILC ($E_{\text{CM}} = 500 \text{ GeV}$) and CLIC (3 TeV) with polarised beams

$$P_{e^+} = 0.6, P_{e^-} = -0.8$$

We sum coherently SM and heavy neutrino diagrams (non-resonant contributions included)

► See diagrams

Quadratic corrections to the $\ell\nu W$, $\nu\nu Z$ vertices can be ignored Light neutrino masses can be neglected

→ Skip details

Single N production at e^+e^- colliders

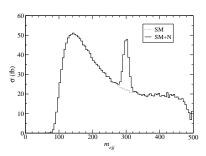
ISR and beamstrahlung effects are included

We perform a parton-level analysis, with a Gaussian smearing of charged lepton and jet energies

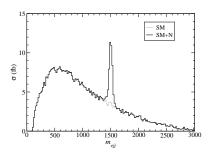
$$\frac{\Delta E^e}{E^e} = \frac{10\%}{\sqrt{E^e}} \oplus 1\% \qquad \frac{\Delta E^j}{E^j} = \frac{50\%}{\sqrt{E^j}} \oplus 4\%$$

$$\frac{\Delta E^{\mu}}{E^{\mu}} = 0.02\% E^{\mu} (0.005\% E^{\mu}) \qquad \text{ILC (CLIC)}$$

Kinematical cuts $p_T \ge 10$ GeV, $|\eta| \le 2.5$, $\Delta R \ge 0.4$

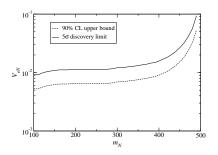

Light neutrino momentum determined from missing 3-momentum and requiring $p_{\nu}^2 = 0$

Main characteristics of the $\ell W \nu$ signal

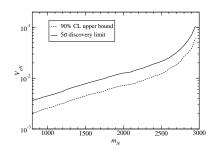

- Dominated by on-shell $N\nu$ production
- Observable only if *N* couples to the electron
- For equal couplings, equal cross sections for Dirac and Majorana heavy neutrinos
- Large backgrounds (LNC, LFV) but large signal too
- At CLIC, smaller SM backgrounds in the μ and τ channels

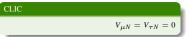
Discovery of heavy neutrinos

Heavy neutrinos: peaks in the ℓjj invariant mass distribution



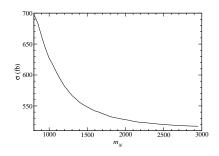






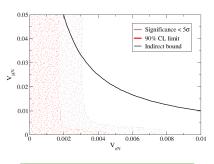
Discovery limits / upper bounds on V_{eN} , m_N

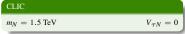


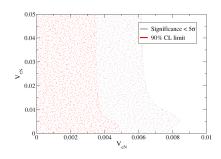

→ Skip cross sections

Cross sections for $e^+e^- \rightarrow e^{\pm}jj\nu$

Cross sections decrease relatively slowly with m_N

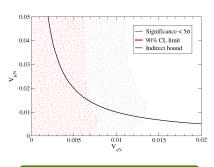


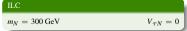


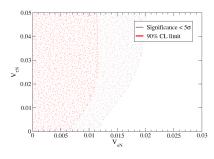

Combined limits on V_{eN} and $V_{\mu N}$ or $V_{\tau N}$

(CLIC)

The statistical significances of the two channels are added

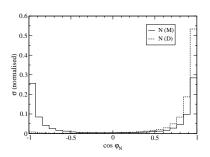


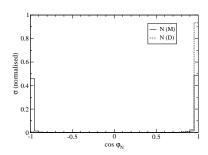



Combined limits on V_{eN} and $V_{\mu N}$ or $V_{\tau N}$

(ILC)

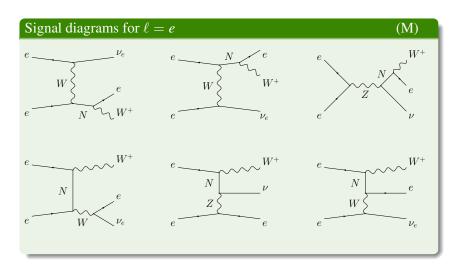
The statistical significances of the two channels are added





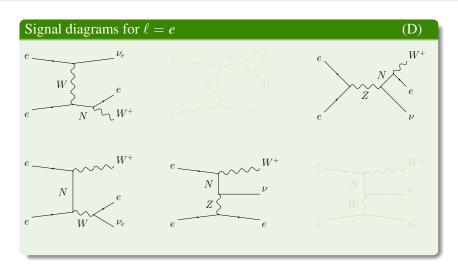
Determination of heavy neutrino character

 φ_N angle between N and incoming e^+/e^- for ℓ^+/ℓ^- final states

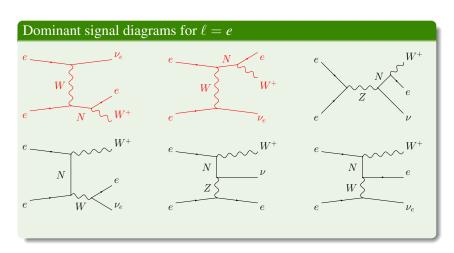


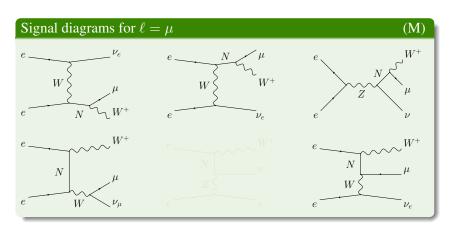
 $m_N = 300 \,\text{GeV}$

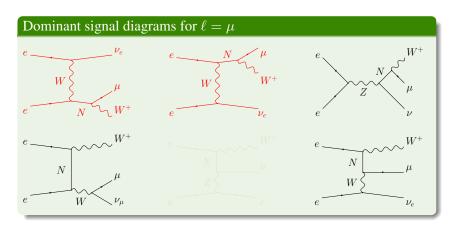
 $V_{\mu N} = V_{\tau N} = 0$ $V_{eN} = 0.073$ Peak cross section, SM subtracted


 $m_N = 1.5 \text{ TeV}$

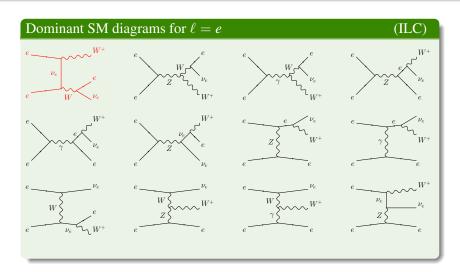
 $V_{eN} = 0.05$ $V_{\mu N} = V_{\tau N} = 0$ Peak cross section, SM subtracted





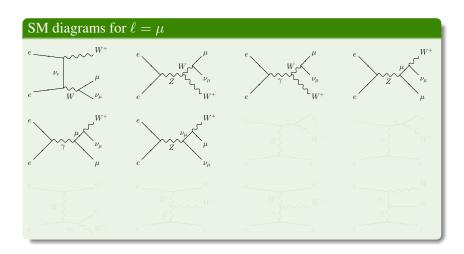

Diagrams related by $t \leftrightarrow u$ interchange

◆ Back ◆ Results ➤ S



Dominant diagrams involve eWN interaction

■ Back


SM diagrams for $\ell = e$

Resonant W^+W^- production

Dominant SM diagrams for $\ell = e$ (CLIC)

Conclusions II

- $e^+e^- \rightarrow N\nu$ sensitive to Dirac and Majorana N coupling to e
- Parton-level studies: ILC can discover $m_N = 400$ GeV with $V_{eN} \sim 0.01$, CLIC can discover $m_N = 1 2$ TeV with $V_{eN} = 0.004 0.01$
- More detailed simulations are required, but sensivity not likely to fall down. Signal large, and background suppression achieved with mass reconstruction
- O If *N* is discovered, its Dirac or Majorana nature can easily be established looking at angular distributions