E6 GUT model \& the Higgs boson search

Gökhan Ünel / UC Irvine \& CERN Saleh Sultansoy / Ankara

II October 2006
Flavour at the LHC workshop

Recall the model

$$
\binom{u_{L}}{d_{L}}, u_{R}, d_{R}, D_{L}, D_{R}\binom{c_{L}}{s_{L}}, c_{R}, s_{R}, S_{L}, S_{R}\binom{t_{L}}{b_{L}}, t_{R}, b_{R}, B_{L}, B_{R}
$$

D, S, B : New iso-singlet quarks $(Q=-1 / 3)$

$$
\begin{align*}
\mathrm{L}_{\mathcal{D}} & =\frac{\sqrt{4 \pi \alpha_{e m}}}{2 \sqrt{2} \sin \theta_{W}}\left[\bar{u}^{\theta} \gamma_{\alpha}\left(1-\gamma_{5}\right) d \cos \phi+\bar{u}^{\theta} \gamma_{\alpha}\left(1-\gamma_{5}\right) D \sin \phi\right] W^{\alpha} \tag{1}\\
& -\frac{\sqrt{4 \pi \alpha_{e m}}}{4 \sin \theta_{W}}\left[\frac{\sin \phi \cos \phi}{\cos \theta_{W}} \bar{d} \gamma_{\alpha}\left(1-\gamma_{5}\right) D\right] Z^{\alpha} \\
& -\frac{\sqrt{4 \pi \alpha_{e m}}}{12 \cos \theta_{W} \sin \theta_{W}}\left[\bar{D} \gamma_{\alpha}\left(4 \sin ^{2} \theta_{W}-3 \sin ^{2} \phi\left(1-\gamma_{5}\right)\right) D+\bar{d} \gamma_{\alpha}\left(4 \sin ^{2} \theta_{W}-3 \cos ^{2} \phi\left(1-\gamma_{5}\right)\right) d\right] Z^{\alpha}+\text { h.c. } .
\end{align*}
$$

θ : CKM mixing angle
The measured values of CKM elements \& unitarity $\phi: d-D$ mixing angle of the 3×4 CKM rows constrains $\phi: \sin \phi<0.07$.

Assumptions:

I. In-family mixing bigger than between family mixing
2. D quark is the lightest, like SM: most accessible in LHC
3. E_{6} gauge bosons heavy \& don't interact w/ SM bosons

Higgs Interaction

-The D-d mixing, before the SSB, will introduce D-h interaction.

- A straightforward calculation gives:
- New width calculation

$$
\begin{aligned}
L_{h}^{M} & =\frac{m_{D}}{\nu} \sin ^{2} \phi_{L} \bar{D}^{M} D^{M} h \\
& -\frac{\sin \phi_{L} \cos \phi_{L}}{2 \nu} \bar{D}^{M}\left[\left(1-\gamma^{5}\right) m_{D}+\left(1+\gamma^{5}\right) m_{d}\right] d^{M} h \\
& -\frac{\sin \phi_{L} \cos \phi_{L}}{2 \nu} \bar{d}^{M}\left[\left(1+\gamma^{5}\right) m_{D}+\left(1-\gamma^{5}\right) m_{d}\right] D^{M} h \\
& +\frac{m_{d}}{\nu} \cos ^{2} \phi_{L} \bar{d}^{M} d^{M} h
\end{aligned}
$$

Illustrative case: $m H=/ 20 \mathrm{GeV}, \sin \phi=0.045$,
blue=w/ Higgs IA,
black=w/o Higgs IA

New cross sections \& BRs

- if $m_{D} \sim 250 \mathrm{GeV}$, then pair production $\sigma \sim 10^{5} \mathrm{fb}$.
- D decay BRs for a light Higgs (I20.. 135 GeV), depend on mp. For high $m_{D}(>700 \mathrm{GeV}) 50,25$ \& 25% for W, Z \& h modes.

Impact on Higgs searches

$B R(H \rightarrow Y Y)=0.2 \%$

- Could we use the D quarks to improve the Higgs search potential of ATLAS?
- Consider:
- D quark pair production
- a light Higgs

MC study on h discovery

D_{1}	D_{2}	BR	\#expected Higgs $/ 100 \mathrm{fb}^{-1}$	expected final state
$D \rightarrow h j$	$D \rightarrow h j$	$0.029(0.053)$	$0.58 \times 10^{6}\left(2.65 \times 10^{4}\right)$	$2 j 4 j_{b}$
$D \rightarrow h j$	$D \rightarrow Z j$	$0.092(0.120)$	$0.92 \times 10^{6}\left(3.0 \times 10^{4}\right)$	$2 j 2 j_{b} 2 l$
$D \rightarrow h j$	$D \rightarrow W j$	$0.190(0.235)$	$1.9 \times 10^{6}\left(5.88 \times 10^{4}\right)$	$2 j 2 j_{b} l E_{T, \text { miss }}$

$\bullet>3 \times 10^{6}\left(>1 \times 10^{5}\right)$ additional Higgs bosons at LHC, if $\mathrm{m}_{\mathrm{D}}=250(500) \mathrm{GeV}$
>enough to motivate a study for $250,500,750$ \& 1000 GeV quarks using the 2 j 2 jb I $\mathrm{E}^{\text {Tiss }}$ signal

- SM background:W jb jь j j events, 80\% from t-t background
- Signal implemented in CompHEP, bg from MadGraph, simulation in athena II.0.4I using ATLfast
- Final analysis done with physics objects in Root
- Generator level cuts are:

$$
\begin{aligned}
\left|\eta_{p}\right| & \leq 3.2 \\
P_{T p} & \geq 20 G e V \\
R_{p} & >0.4
\end{aligned}
$$

Event Kinematics

-Example for $\mathrm{mD}=500 \mathrm{GeV}$

P_{T} jet

$$
H_{T}=\sum_{\text {particles }}\left|P_{T}\right|
$$

D and H Reconstruction 1/2

- Only e \& μ are considered for W decays - Missing E_{T} is assumed to come from V - Analysis cuts (example at $\mathrm{m}_{\mathrm{D}}=750 \mathrm{GeV}$) are :
- only H_{T} \& $\mathrm{P}_{\mathrm{Tjet}}$ optimized

cut value	$\% \epsilon_{\text {si }}$	$\% \epsilon_{b g}$
\#lep $=1$	82.6	79.1
$\#$ jet $=4$	98.7	99.4
$\# b_{j e t}=2$	33.7	36.2
$\mathrm{P}_{T} l e p>20 \mathrm{GeV}$	96.0	93.5
P_{T} jet $>140 \mathrm{GeV}$	86.3	36.2
$\cos \theta_{\text {jet }}>-0.8$	97.8	90.4
$\mathrm{M}_{\text {jet-jet }}>90 \mathrm{GeV}$	99.9	83.1
$\mathrm{H}_{T}>1300 \mathrm{GeV}$	77.0	20.2
$\Delta m_{D}<100 \mathrm{GeV}$	55.7	32.9
combined	9.54	0.48

--- SM background
++ Signal
\checkmark With these parameters, using $10 \mathrm{fb}^{-1}$ integrated luminosity, both the Higgs boson and the D quark can be discovered.

D and H Reconstruction $2 / 2$

- For higher D quark masses lets concentrate only on Higgs searches:

- $30 \mathrm{fb}^{-1} \int$ Luminosity yields:

$M_{D}(\mathrm{GeV})$	250		500		750		1000	
S	8802	5303	336	222	27	19	1.9	1.4
B	29379	31717	313	321	32	56	3.1	10.6
$S / \sqrt{B+S}$	45.1	27.6	13.2	9.5	3.5	2.1	0.84	0.42

Higgs and D signal reach

- 5σ Higgs discovery from DD \rightarrow Whjj channel can be made in one year of running at design luminosity if m_{D} $<700 \mathrm{GeV}$
- If $m_{D}<630 \mathrm{GeV}$, this channel becomes as efficient as $\mathrm{H} \rightarrow \gamma \gamma$. (i.e. 8σ in $100 \mathrm{fb}^{-1}$)

Outlook

- The 3 sigma signal from a light Higgs, can be seen within a year $\left(100 \mathrm{fb}^{-1}\right)$ via the E_{6} quarks if $\mathrm{m}_{\mathrm{Q}}<800 \mathrm{GeV}$.
- The outcome should be checked against the full simulation (Geant) results. (working for a CSC note)
- The impact of the heavy quark(s) to the Higgs production via loop diagrams could be interesting.
- BG in this analysis is $\sim 20 \%$ overestimated: we did $\sigma=2^{*}\left(\mathrm{~W}^{+} 4 \mathrm{j}\right)$ but $\sigma(\mathrm{W}-4 \mathrm{j})=0.8^{*} \sigma\left(\mathrm{~W}^{+} 4 \mathrm{j}\right)$
- Multi jet background to be checked. (thanks to Juan Antonio for the hint!)

