E₆ GUT model & the Higgs boson search

Gökhan Ünel / UC Irvine & CERN Saleh Sultansoy / Ankara

II October 2006 Flavour at the LHC workshop

Recall the model

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, u_R, d_R, D_L, D_R \begin{pmatrix} c_L \\ s_L \end{pmatrix}, c_R, s_R, S_L, S_R \begin{pmatrix} t_L \\ b_L \end{pmatrix}, t_R, b_R, B_L, B_R$$

D, S, B: New iso-singlet quarks $(Q = -\frac{1}{3})$

$$L_{\mathcal{D}} = \frac{\sqrt{4\pi\alpha_{em}}}{2\sqrt{2}\sin\theta_{W}} \left[\bar{u}^{\theta}\gamma_{\alpha} \left(1 - \gamma_{5} \right) d\cos\phi + \bar{u}^{\theta}\gamma_{\alpha} \left(1 - \gamma_{5} \right) D\sin\phi \right] W^{\alpha}$$

$$- \frac{\sqrt{4\pi\alpha_{em}}}{4\sin\theta_{W}} \left[\frac{\sin\phi\cos\phi}{\cos\theta_{W}} \bar{d}\gamma_{\alpha} \left(1 - \gamma_{5} \right) D \right] Z^{\alpha}$$

$$- \frac{\sqrt{4\pi\alpha_{em}}}{12\cos\theta_{W}\sin\theta_{W}} \left[\bar{D}\gamma_{\alpha} \left(4\sin^{2}\theta_{W} - 3\sin^{2}\phi(1 - \gamma_{5}) \right) D + \bar{d}\gamma_{\alpha} \left(4\sin^{2}\theta_{W} - 3\cos^{2}\phi(1 - \gamma_{5}) \right) d \right] Z^{\alpha} + h.c.$$

$$\theta : \mathsf{CKM mixing angle}$$

The measured values of CKM elements & unitarity of the 3x4 CKM rows constrains ϕ : sin $\phi < 0.07$.

 ϕ : d - D mixing angle

Assumptions:

- In-family mixing bigger than between family mixing
- D quark is the lightest, like SM: most accessible in LHC 2.
- E₆ gauge bosons heavy & don't interact w/ SM bosons 3.

Higgs Interaction

- The D-d mixing, before the SSB, will introduce D-h interaction.
- A straightforward calculation gives:

Γ (GeV)

1

10

10

10

 $M_n(GeV)$

New cross sections & BRs

- if $m_D \sim 250$ GeV, then pair production $\sigma \sim 10^5$ fb.
- D decay BRs for a light Higgs (120..135GeV), depend on m_D. For high m_D (>700GeV) 50, 25 & 25% for W, Z & h modes.

Impact on Higgs searches

- Could we use the D quarks to improve the Higgs search potential of ATLAS?
- Consider:
 - D quark pair production
 - a light Higgs

MC study on h discovery

D_1	D_2	BR	#expected Higgs/100fb ⁻¹	expected final state	
$D \rightarrow h j$	$D \rightarrow h j$	$0.029\ (0.053)$	$0.58{ imes}10^6(2.65{ imes}10^4)$	$2j \ 4j_b$	
$D \rightarrow h j$	$D \to Z j$	$0.092\ (0.120)$	$0.92 \times 10^6 (3.0 \times 10^4)$	$2j \ 2j_b \ 2l$	
$D \to h j$	$D \to W j$	$0.190\ (0.235)$	$1.9 \times 10^{6} (5.88 \times 10^{4})$	$2j \; 2j_b \; l \; E_{T,miss}$	

• >3x10⁶ (>1x10⁵) additional Higgs bosons at LHC, if $m_D=250$ (500) GeV

- enough to motivate a study for 250, 500, 750 & 1000 GeV quarks using the 2j 2jb I ET miss signal
- SM background:W $j_b j_b j_j$ events, 80% from t-t background
- Signal implemented in CompHEP, bg from MadGraph, simulation in athena 11.0.41 using ATLfast
- Final analysis done with physics objects in Root
- Generator level cuts are: $|\eta_p| \leq 3.2$, $P_{T p} \geq 20 \, GeV$,

$$R_p > 0.4$$

Event Kinematics

•Example for $m_D = 500 \text{ GeV}$

D and H Reconstruction 1/2

- \bullet Only e & μ are considered for W decays
- \bullet Missing E_T is assumed to come from ν
- Analysis cuts (example at $m_D = 750 \text{ GeV}$) are :
 - only H_T & P_{Tjet} optimized

cut value	$\%\epsilon_{si}$	$\%\epsilon_{bg}$		
#lep = 1	82.6	79.1		
#jet = 4	98.7	99.4		
$\#b_{jet}=2$	33.7	36.2		
$P_T lep > 20 \text{ GeV}$	96.0	93.5		
$P_T jet > 140 \text{ GeV}$	86.3	36.2		
$\cos\theta_{jet}$ > -0.8	97.8	90.4		
$M_{jet-jet} > 90 \text{ GeV}$	99.9	83.1		
$H_T > 1300 \text{ GeV}$	77.0	20.2		
$\Delta m_D < 100 \mathrm{GeV}$	55.7	32.9		
combined	9.54	0.48		

--- SM background ++ Signal

✓ With these parameters, using I Ofb⁻¹ integrated luminosity, both the Higgs boson and the D quark can be discovered.

D and H Reconstruction 2/2

•For higher D quark masses lets concentrate only on Higgs searches:

• 30fb⁻¹ ∫Luminosity yields:

[$M_D(\text{GeV})$	250		500		750		1000	
	S	8802	5303	336	222	27	19	1.9	1.4
	В	29379	31717	313	321	32	56	3.1	10.6
	$S/\sqrt{B+S}$	45.1	27.6	13.2	9.5	3.5	2.1	0.84	0.42

9

Higgs and D signal reach

- 5σ Higgs discovery from DD→Whjj channel can be made in <u>one</u> year of running at design luminosity if m_D <700 GeV
- If $m_D < 630$ GeV, this channel becomes as efficient as $H \rightarrow \gamma \gamma$. (i.e. 8σ in 100 fb⁻¹)

Outlook

- The 3 sigma signal from a light Higgs, can be seen within a year (100 fb⁻¹) via the E₆ quarks if m_Q< 800 GeV.</p>
- The outcome should be checked against the full simulation (Geant) results. (working for a CSC note)
- The impact of the heavy quark(s) to the Higgs production via loop diagrams could be interesting.
- ▶ BG in this analysis is ~20% overestimated: we did σ =2*(W⁺4j) but σ (W⁻4j) = 0.8* σ (W⁺4j)
- Multi jet background to be checked. (thanks to Juan Antonio for the hint!)