
1

CREATING BILINEAR INTERPOLATION FOR
SIMPLIFIED CMS MAGNETIC FIELD FOR GEANTV

Ananya
B.Tech (Mechanical Engineering)

IIT Bombay
PH-SFT Group Meeting

February 29th, 2016

Mentor:
John Apostolakis

Supervisor:
Dr. Federico Carminati

OUTLINE

•  GeantV and magnetic field tracking
•  The CMS magnetic field
•  Approximation using Bilinear Interpolation
•  Vectorization and memory layout
•  Optimization
•  VTune Analysis

•  Vectorization of Integration of motion

2

CONTEXT

•  GeantV development using nearly realistic LHC
detector
•  Geometry, Field, Hits, Physics.

•  Need standalone code for CMS-like magnetic field
•  Asked to do simple interpolation.

•  Got field values from CMS simulation team.

•  Note: Not related to CMS official code for B-field.

3

PROBLEM STATEMENT

•  Start with sample values of 2D CMS field.
•  Assume phi-symmetric field.
•  Find magnetic field given a point in 3D space.

4

5

Br vs r (for boundaries along Z)

Bz vs r (for boundaries along Z)

Bz vs z (for boundaries along r)

WHAT DO WE DO?

•  Read given 2D map.
•  Find corresponding magnetic field using bilinear

interpolation on values from map.

6

CODE IMPROVEMENT

•  First Version:
•  27 multiplications
•  32 additions/subtractions
•  7 divisions
•  8 modulus
•  5 trigonometric ops
•  1 sqrt

•  Current Version:
•  29 multiplications
•  24-28 additions/subtractions
•  2 floor
•  3 max/min
•  1 division
•  1 sqrt

•  Speed enhancement by O(100) (~e-8 s/event)

7

VALIDATING USING UNIT TEST

•  Validated predicted magnetic field against given
2D map using unit tests.
•  Validation at:
•  Node values
•  Mid-points of nodes
•  Middle of cell

•  ~75k points

8

9

VECTORIZATION

VECTORIZATION

•  "Vectorization" (simplified) is the process of rewriting a loop so
that instead of processing a single element of an array N
times, it processes (say) 4 elements of the array simultaneously
N/4 times.

•  What are we doing?
•  Processing multiple particles/tracks simultaneously

10

MEMORY LAYOUT

11

‘Standard layout’ – used also by Reorder/Reorder2

Br Bphi Bz Br Bphi Bz Br Bphi Bz

i1 i2 i2+1(!=i3)

Br Bphi Bz Br Bphi Bz

i3 i4

1 MagCellStruct (CellVersion)

Br Bphi Bz Br Bphi Bz Br Bphi Bz Br Bphi Bz

i1 i2 i3 i4

1 MagCellArray (AutoVec)

Br1 Br2 Br3 Br4 Bphi1 Bphi2 Bphi3 Bphi4 Bz1 Bz2 Bz3 Bz4

Br Bphi Bz

M
in

im
u

m
 M

e
m

o
ry

M

o
re

 m
e

m
o

ry

12

20.0	

22.0	

24.0	

26.0	

28.0	

30.0	

32.0	

34.0	

36.0	

38.0	

1.E+04	 1.E+05	 1.E+06	

Ti
m
e	
pe

r	c
al
l(n

s)
	

#Points	

Sequen6al	

FirstVersion	

Gather	

Gather+	Float	

CellVersion	

Auto-vec	

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

1.E+04	 1.E+05	 1.E+06	

Ti
m
e	
pe

r	c
al
l	(
ns
)	

#Points	

Vector	

FirstVersion	

Gather	

Gather+Float	

CellVersion	

AutoVec	

DIFFERENT ORDERING OF GATHER

13

i1[0]
i1[1]
i1[2]

i2[0]
i2[1]
i2[2]

i3[0]
i3[1]
i3[2]

i4[0]
i4[1]
i4[2]

Gather1

i1[0]
i1[1]
i1[2]

i2[0]
i2[1]
i2[2]

i3[0]
i3[1]
i3[2]

i4[0]
i4[1]
i4[2]

Gather2

14

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

10000	 100000	 1000000	

Ti
m
e	
pe

r	c
al
l	(
ns
)	

Number	of	points	

Vector	

FirstVersion	

Gather	

Gather+Float	

Reorder	

CellVersion	

AutoVec	

Reorder2	

15

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

10000	 100000	 1000000	

Ve
ct
or
Ve

rs
io
n/
Be

st
Sc
al
ar
Ti
m
e	

Number	of	points	

Speedup	

FirstVersion	

Gather	

Gather+	Float	

Reorder	

CellVersion	

AutoVec	

Reorder2	

OBSERVATIONS

•  Speedup factor of ~3

•  Semi-realistic benchmark:
•  Half the points are new; the other half are ‘moved’ near to previous values.
•  Exponential random distribution.
•  Time reduced by ~5%. Likely effect is from cache.

•  Difference in performance from changing doubles to floats:
•  3-20% for sequential
•  30-40% for vector version

•  Difference in performance from changing order of memory
operations:
•  5-7% for sequential
•  5-20% for vector version

16

VTUNE ANALYSIS

17

Elapsed	
Time	

InstrucFons	
ReFred	 CPI	Rate	

Back-end	
Bound	

Memory	
Bound	Core	Bound	

Port	
UFlizaFon	

SequenFal	
(nRep	=	200)	

Reorder2	
(Haswell	Xeon)	 8.166	 31.7B	 0.947	 0.786	 0.282	 0.505	 0.327	

Vector		
(nRep	=	500)	

Reorder2	
(Haswell	Xeon)	 7.665	 33.8B	 0.776	 0.697	 0.143	 0.555	 0.463	

18

PART 2: VECTORIZATION OF
INTEGRATION

INTEGRATING MOTION

19

F
!"
=
1
m
p
!"
×B
!"

B
!"

Magnetic Field

Force

Equation of motion (ODE)

Vecotrizable

✓

✓

✓

dx
!

ds
=
p
"!

p
"!

dp
!"

ds
=
1
p
F(v)
! "!!!

20

Runge Kutta

Driver

Vectorizable

✗ Error Control
Adaptive Stepsize

✓

Input : yo
Output: y1, Δy1

(Not Naively vectorizable)

success

fail

WHY NOT?

21

•  Different step lengths:

•  Different magnetic field

•  Different number of iterations for a success step

VECTORIZATION OF INTEGRATION
DRIVER

•  Takes a buffer stream of 16 particles/tracks.

•  Starts working with 4 in Vc vector .

•  As soon as integration is over for one track, insert a new track

in its place.

22

Preliminary results (100 steps)

Sequential Vectorized

#CashKarp Calls 435 172

#OneGoodStep Calls 324 94

CONCLUSIONS

•  Working sequential and vector bilinear interpolation
approximation of CMS magnetic field

•  Vector speedup of 3x on Haswell (Xeon)

•  Demonstrated effect of memory layout and

sensitivity to order of data points’ access

•  First version of integration driver

23

REFERENCES

•  Bilinear Interpolation (Wikipedia) https://en.wikipedia.org/wiki/
Bilinear_interpolation

•  Stack Overflow http://stackoverflow.com
•  https://software.intel.com/en-us/node/544392
•  https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/

ForApplicationDeveloper/html/ch04s03.html
•  Numerical Recipes in C, The Art of Scientific Computing
•  https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/

CellProgrammingTutorial/BasicsOfSIMDProgramming.html [Saul Teukolsky,
William T. Vetterling, William H. Press, Brian P. Flannery]

24

THANK YOU!

25

26

BACKUP SLIDES

Bphi vs r (for boundaries along Z)

27

Bphi vs z (for boundaries along r)

Br vs z (for boundaries along r)

28

Sequential

#points	 Ini6al	 VcGather	
VcGather+	
Float	 CellVersion	 AutoVec	

1.E+04	 26.1	 26.1	 25.5	 25.0	 24.8	

1.E+05	 27.5	 27.4	 26.0	 25.5	 26.7	

1.E+06	 35.7	 35.8	 29.3	 28.8	 32.0	

Vector

#points	 Ini6al	 VcGather	
VcGather+	
Float	 CellVersion	 AutoVec	

1.E+04	 21.3	 14.8	 8.9	 8.6	 8.6	

1.E+05	 21.4	 14.7	 9.0	 8.7	 8.2	

1.E+06	 23.8	 17.4	 12.1	 13.8	 12.4	

Speedup

#points	 Ini6al	 VcGather	
VcGather	
Float	 CellVersion	 AutoVec	

1.E+04	 1.23	 1.76	 2.85	 2.91	 2.88	

1.E+05	 1.29	 1.86	 2.90	 2.93	 3.26	

1.E+06	 1.50	 2.06	 2.43	 2.09	 2.58	

STEPS

•  Initially bruteforce approach
•  VcGather:

•  Used gather method of Vc library
•  VcGather + Floats :

•  Used floats instead of doubles
•  Loss of precision. Relative error > e-6 for certain test points
(Floats used after this point)

•  Reorder:
•  Reordered the gather function calls
•  Access field values in index order: (i1, then i3), then (i2, then i4).
•  In memory, contiguity in form: i1,i2,i3,i4

•  Cell-version:
•  Store data in a different way. Store field values in blocks of 4.
•  Requires 4 times more memory initially since each point is stored 4 times

•  Auto-vec:
•  Store data in a different way
•  Store Br[4] , Bz[4], Bphi[4] as one struct
•  Auto-vectorization by compiler for final step of adding weighted field values

•  Reorder2:
•  Access components in order:

•  1st component of 1st point
•  1st component of 2nd point
•  2nd component of 1st point
•  3rd component of 1st point 29

30

20.0	

22.0	

24.0	

26.0	

28.0	

30.0	

32.0	

34.0	

36.0	

38.0	

10000	 100000	 1000000	

Ti
m
e	
pe

r	c
al
l	(
ns
)	

Number	of	points	

Sequen6al	

FirstVersion	

Gather	

Gather+	Float	

Reorder	

CellVersion	

AutoVec	

Reorder2	

31

Sequential

#points	 FirstVersion	VcGather	
VcGather+	
Float	 Reorder	 CellVersion	 AutoVec	 Reorder2	

1.E+04	 26.1	 26.1	 25.5	 23.9	 25.0	 24.8	 24.0	

1.E+05	 27.5	 27.4	 26.0	 24.4	 25.5	 26.7	 27.0	

1.E+06	 35.7	 35.8	 29.3	 28.1	 28.8	 32.0	 28.7	

Vector

#points	 FirstVersion	 VcGather	
VcGather+	
Float	 Reorder	 CellVersion	 AutoVec	 Reorder2	

1.E+04	 21.3	 14.8	 8.9	 10.2	 8.6	 8.6	 8.4	

1.E+05	 21.4	 14.7	 9.0	 10.2	 8.7	 8.2	 8.5	

1.E+06	 23.8	 17.4	 12.1	 13.4	 13.8	 12.4	 9.6	

Speedup

#points	 FirstVersion	VcGather	
VcGather
+Float	 Reorder	 CellVersion	 AutoVec	 Reorder2	

1.E+04	 1.12	 1.61	 2.67	 2.34	 2.78	 2.78	 2.85	

1.E+05	 1.14	 1.66	 2.73	 2.38	 2.80	 2.98	 2.87	

1.E+06	 1.18	 1.61	 2.33	 2.10	 2.04	 2.27	 2.93	

VTUNE PARAMETERS

•  Instructions Retired
•  Instructions actually needed by program flow
•  No. of instructions completely executed between 2 clocktick event samples

•  CPI Rate:
•  Clockticks per Instructions Retired/Cycles per instruction
•  Higher CPI, more latency (cache misses, I/O etc)

•  Back-end Bound:
•  Identify slots where no microps are delivered due to a lack of required resources for

accepting more uOps in the back-end of the pipeline. E.g. stalls due to data-cache misses
or overloaded divider unit

•  Memory Bound:
•  Fraction of slots where pipeline could be stalled due to demand load or store instructions
•  Incomplete in-flight memory demand loads

•  Core Bound
•  Shouldn’t be so high. Ideally 20%
•  Represents how much core non-memory issues were of a bottleneck.
•  Shortage in hardware compute resources, dependencies software’s instructions
•  Indicates dependencies in program’s data or instruction flow, overload of execution units

•  Port Utilization:
•  Represents fractions of cycles during which an application was stalled due to core non-

divider related issues. E.g. heavy data-dependency between nearby instructions

32

VTUNE ANALYSIS

33

Elapsed	
Time	

InstrucFons	
ReFred	 CPI	Rate	

Back-end	
Bound	

Memory	
Bound	 Core	Bound	 Port	UFlizaFon	

Scalar	(nRep	=	
200)	

Auto_vec	 8.978	 28.2B	 1.211	 0.837	 0.456	 0.381	 0.245	

Cell_version	 8.276	 32.7B	 0.967	 0.788	 0.305	 0.483	 0.314	

VcGather	 8.224	 33.0B	 0.949	 0.787	 0.295	 0.492	 0.322	

Reorder	 8.006	 31.7B	 0.965	 0.797	 0.320	 0.476	 0.296	

Reorder2	 8.168	 31.7B	 0.984	 0.794	 0.307	 0.487	 0.321	

Reorder2(Haswell)	 8.166	 31.7B	 0.947	 0.786	 0.282	 0.505	 0.327	

Vector	(nRep	=	
500)	

Auto_vec	 6.495	 26.6B	 0.849	 0.725	 0.335	 0.390	 0.214	

Cell_version	 7.359	 26.5B	 0.968	 0.770	 0.438	 0.332	 0.184	

VcGather	 6.828	 35.4B	 0.669	 0.655	 0.151	 0.505	 0.371	

Reorder	 7.841	 35.7B	 0.763	 0.715	 0.212	 0.503	 0.407	

Reorder2	 6.806	 38.9B	 0.610	 0.657	 0.153	 0.504	 0.343	

Reorder2(Haswell)	 7.665	 33.8B	 0.776	 0.697	 0.143	 0.555	 0.463	

INTEGRATION DRIVER

•  In order to propagate a track inside a field, the equation
of motion of the particle in the field is integrated. In
general, this is done using a Runge-Kutta method for the
integration of ordinary differential equations.

•  Runge-Kutta methods propagate a solution over an
interval by combining the information from several Euler-
style steps (each involving one evaluation of the right-
hand f’s), and then using the information obtained to
match a Taylor series expansion up to some higher order.

•  TMagFieldEquation calculates derivatives (dy/dx)
•  TUniformMagField makes a constant magnetic field
•  Stepper CashKarp takes a step and computes final

position and error estimates which are used in adaptive
size control to decide whether it is a good step or not

34

DIFFERENT ROUTINES

•  Algorithm Routine
•  This implements the basic formulas of the method(CashKarp

here), starts with dependent variables yi at x, and calculates
new values of the dependent variables at the value x + h.

•  Stepper Routine
•  Makes quality control decision : acceptable solution or not
•  Takes the largest stepsize consistent with specified

performance.
•  Calls the algorithm routine. It may reject the result, set a smaller

stepsize, and call the algorithm routine again, until
compatibility with a predetermined accuracy criterion has
been achieved.

•  Driver Routine
•  Starts and stops the integration, stores intermediate results, and

generally acts as an interface with the user.

35

