
1 

CREATING BILINEAR INTERPOLATION FOR 
SIMPLIFIED CMS MAGNETIC FIELD FOR GEANTV 

Ananya 
B.Tech (Mechanical Engineering) 

IIT Bombay 
PH-SFT Group Meeting 

February 29th, 2016 

Mentor: 
John Apostolakis 

Supervisor: 
Dr. Federico Carminati 



OUTLINE 

•  GeantV and magnetic field tracking  
•  The CMS magnetic field 
•  Approximation using Bilinear Interpolation 
•  Vectorization and memory layout 
•  Optimization 
•  VTune Analysis 

•  Vectorization of Integration of motion  
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CONTEXT 

•  GeantV development using nearly realistic LHC 
detector  
•  Geometry, Field, Hits, Physics. 

•  Need standalone code for CMS-like magnetic field 
•  Asked to do simple interpolation.  

•  Got field values from CMS simulation team. 

•  Note: Not related to CMS official code for B-field. 
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PROBLEM STATEMENT 

•  Start with sample values of 2D CMS field. 
•  Assume phi-symmetric field.  
•  Find magnetic field given a point in 3D space.   
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Br vs r (for boundaries along Z) 

Bz vs r (for boundaries along Z) 

Bz vs z (for boundaries along r) 



WHAT DO WE DO? 

•  Read given 2D map. 
•  Find corresponding magnetic field using bilinear 

interpolation on values from map. 
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CODE IMPROVEMENT   

•  First Version: 
•  27 multiplications 
•  32 additions/subtractions 
•  7 divisions 
•  8 modulus  
•  5 trigonometric ops 
•  1 sqrt 

•  Current Version: 
•  29 multiplications 
•  24-28 additions/subtractions 
•  2 floor 
•  3 max/min 
•  1 division 
•  1 sqrt 

•  Speed enhancement by  O(100) (~e-8 s/event) 
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VALIDATING USING UNIT TEST 

•  Validated predicted magnetic field against given 
2D map using unit tests. 
•  Validation at: 
•  Node values 
•  Mid-points of nodes 
•  Middle of cell 

•  ~75k points  
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VECTORIZATION 



VECTORIZATION 

•  "Vectorization" (simplified) is the process of rewriting a loop so 
that instead of processing a single element of an array N 
times, it processes (say) 4 elements of the array simultaneously 
N/4 times. 

•  What are we doing? 
•  Processing multiple particles/tracks simultaneously 
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MEMORY LAYOUT 
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‘Standard layout’ – used also by Reorder/Reorder2 
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DIFFERENT ORDERING OF GATHER 
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OBSERVATIONS 

•  Speedup factor of ~3 

•  Semi-realistic benchmark: 
•  Half the points are new; the other half are ‘moved’ near to previous values. 
•  Exponential random distribution. 
•  Time reduced by ~5%. Likely effect is from cache. 

•  Difference in performance from changing doubles to floats:  
•  3-20% for sequential 
•  30-40% for vector version 

•  Difference in performance from changing order of memory 
operations: 
•  5-7% for sequential  
•  5-20% for vector version 
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VTUNE ANALYSIS 
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Elapsed	
Time	

InstrucFons	
ReFred	 CPI	Rate	

Back-end	
Bound	

Memory	
Bound	Core	Bound	

Port	
UFlizaFon	

SequenFal	
(nRep	=	200)	

Reorder2	
(Haswell	Xeon)	 8.166	 31.7B	 0.947	 0.786	 0.282	 0.505	 0.327	

Vector		
(nRep	=	500)	

Reorder2	
(Haswell	Xeon)	 7.665	 33.8B	 0.776	 0.697	 0.143	 0.555	 0.463	



18 

PART 2: VECTORIZATION OF 
INTEGRATION 



INTEGRATING MOTION 
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Runge Kutta  

Driver  

Vectorizable 

✗ Error Control 
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WHY NOT? 

21 

•  Different step lengths:  

•  Different magnetic field 
 
•  Different number of iterations for a success step 



VECTORIZATION OF INTEGRATION 
DRIVER 

•  Takes a buffer stream of 16 particles/tracks. 
 
•  Starts working with 4 in Vc vector . 
 
•  As soon as integration is over for one track, insert a new track 

in its place. 
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Preliminary results (100 steps) 

Sequential Vectorized 

#CashKarp Calls 435 172 

#OneGoodStep Calls 324 94 



CONCLUSIONS 

•  Working sequential and vector bilinear interpolation 
approximation of CMS magnetic field  

 
•  Vector speedup of 3x on Haswell (Xeon) 
 
•  Demonstrated effect of memory layout and 

sensitivity to order of data points’ access 
 
•  First version of integration driver 
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THANK YOU!  
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BACKUP SLIDES 



Bphi vs r (for boundaries along Z) 
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Bphi vs z (for boundaries along r) 

Br vs z (for boundaries along r) 
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Sequential 

#points	 Ini6al	 VcGather	
VcGather+	
Float	 CellVersion	 AutoVec	

1.E+04	 26.1	 26.1	 25.5	 25.0	 24.8	

1.E+05	 27.5	 27.4	 26.0	 25.5	 26.7	

1.E+06	 35.7	 35.8	 29.3	 28.8	 32.0	

Vector 

#points	 Ini6al	 VcGather	
VcGather+	
Float	 CellVersion	 AutoVec	

1.E+04	 21.3	 14.8	 8.9	 8.6	 8.6	

1.E+05	 21.4	 14.7	 9.0	 8.7	 8.2	

1.E+06	 23.8	 17.4	 12.1	 13.8	 12.4	

Speedup 

#points	 Ini6al	 VcGather	
VcGather	
Float	 CellVersion	 AutoVec	

1.E+04	 1.23	 1.76	 2.85	 2.91	 2.88	

1.E+05	 1.29	 1.86	 2.90	 2.93	 3.26	

1.E+06	 1.50	 2.06	 2.43	 2.09	 2.58	



STEPS   

•  Initially bruteforce approach  
•  VcGather: 

•   Used gather method of Vc library 
•  VcGather + Floats :  

•  Used floats instead of doubles 
•  Loss of precision. Relative error > e-6 for certain test points 
(Floats used after this point) 

•  Reorder:  
•  Reordered the gather function calls  
•  Access field values in index order: (i1, then i3), then (i2, then i4).  
•  In memory, contiguity in form: i1,i2,i3,i4 

•  Cell-version:  
•  Store data in a different way. Store field values in blocks of 4.  
•  Requires 4 times more memory initially since each point is stored 4 times 

•  Auto-vec:  
•  Store data in a different way 
•  Store Br[4] , Bz[4], Bphi[4] as one struct 
•  Auto-vectorization by compiler for final step of adding weighted field values 

•  Reorder2: 
•  Access components in order: 

•  1st component of 1st point 
•  1st component of 2nd point 
•  2nd component of 1st point 
•  3rd component of 1st point 29 
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Sequential 

#points	 FirstVersion	VcGather	
VcGather+	
Float	 Reorder	 CellVersion	 AutoVec	 Reorder2	

1.E+04	 26.1	 26.1	 25.5	 23.9	 25.0	 24.8	 24.0	

1.E+05	 27.5	 27.4	 26.0	 24.4	 25.5	 26.7	 27.0	

1.E+06	 35.7	 35.8	 29.3	 28.1	 28.8	 32.0	 28.7	

Vector 

#points	 FirstVersion	 VcGather	
VcGather+	
Float	 Reorder	 CellVersion	 AutoVec	 Reorder2	

1.E+04	 21.3	 14.8	 8.9	 10.2	 8.6	 8.6	 8.4	

1.E+05	 21.4	 14.7	 9.0	 10.2	 8.7	 8.2	 8.5	

1.E+06	 23.8	 17.4	 12.1	 13.4	 13.8	 12.4	 9.6	

Speedup 

#points	 FirstVersion	VcGather	
VcGather
+Float	 Reorder	 CellVersion	 AutoVec	 Reorder2	

1.E+04	 1.12	 1.61	 2.67	 2.34	 2.78	 2.78	 2.85	

1.E+05	 1.14	 1.66	 2.73	 2.38	 2.80	 2.98	 2.87	

1.E+06	 1.18	 1.61	 2.33	 2.10	 2.04	 2.27	 2.93	



VTUNE  PARAMETERS 

•  Instructions Retired 
•  Instructions actually needed by program flow 
•  No. of instructions completely executed between 2 clocktick event samples 

•  CPI Rate: 
•  Clockticks per Instructions Retired/Cycles per instruction 
•  Higher CPI, more latency (cache misses, I/O etc) 

•  Back-end Bound: 
•  Identify slots where no microps are delivered due to a lack of required resources for 

accepting more uOps in the back-end of the pipeline. E.g. stalls due to data-cache misses 
or overloaded divider unit 

•  Memory Bound: 
•  Fraction of slots where pipeline could be stalled due to demand load or store instructions 
•  Incomplete in-flight memory demand loads 

•  Core Bound 
•  Shouldn’t be so high. Ideally 20% 
•  Represents how much core non-memory issues were of a bottleneck. 
•  Shortage in hardware compute resources, dependencies software’s instructions  
•  Indicates dependencies in program’s data or instruction flow, overload of execution units 

•  Port Utilization: 
•  Represents fractions of cycles during which an application was stalled due to core non-

divider related issues. E.g. heavy data-dependency between nearby instructions 
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VTUNE ANALYSIS 
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Elapsed	
Time	

InstrucFons	
ReFred	 CPI	Rate	

Back-end	
Bound	

Memory	
Bound	 Core	Bound	 Port	UFlizaFon	

Scalar	(nRep	=	
200)	

Auto_vec	 8.978	 28.2B	 1.211	 0.837	 0.456	 0.381	 0.245	

Cell_version	 8.276	 32.7B	 0.967	 0.788	 0.305	 0.483	 0.314	

VcGather	 8.224	 33.0B	 0.949	 0.787	 0.295	 0.492	 0.322	

Reorder	 8.006	 31.7B	 0.965	 0.797	 0.320	 0.476	 0.296	

Reorder2	 8.168	 31.7B	 0.984	 0.794	 0.307	 0.487	 0.321	

Reorder2(Haswell)	 8.166	 31.7B	 0.947	 0.786	 0.282	 0.505	 0.327	

Vector	(nRep	=	
500)	

Auto_vec	 6.495	 26.6B	 0.849	 0.725	 0.335	 0.390	 0.214	

Cell_version	 7.359	 26.5B	 0.968	 0.770	 0.438	 0.332	 0.184	

VcGather	 6.828	 35.4B	 0.669	 0.655	 0.151	 0.505	 0.371	

Reorder	 7.841	 35.7B	 0.763	 0.715	 0.212	 0.503	 0.407	

Reorder2	 6.806	 38.9B	 0.610	 0.657	 0.153	 0.504	 0.343	

Reorder2(Haswell)	 7.665	 33.8B	 0.776	 0.697	 0.143	 0.555	 0.463	



INTEGRATION DRIVER 

•  In order to propagate a track inside a field, the equation 
of motion of the particle in the field is integrated. In 
general, this is done using a Runge-Kutta method for the 
integration of ordinary differential equations. 

•  Runge-Kutta methods propagate a solution over an 
interval by combining the information from several Euler-
style steps (each involving one evaluation of the right-
hand f’s), and then using the information obtained to 
match a Taylor series expansion up to some higher order.  

•  TMagFieldEquation calculates derivatives (dy/dx) 
•  TUniformMagField makes a constant magnetic field 
•  Stepper CashKarp takes a step and computes final 

position and error estimates which are used in adaptive 
size control to decide whether it is a good step or not  
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DIFFERENT ROUTINES 

•  Algorithm Routine 
•  This implements the basic formulas of the method(CashKarp 

here), starts with dependent variables yi at x, and calculates 
new values of the dependent variables at the value x + h.  

•  Stepper Routine 
•  Makes quality control decision : acceptable solution or not 
•  Takes the largest stepsize consistent with specified 

performance.  
•  Calls the algorithm routine. It may reject the result, set a smaller 

stepsize, and call the algorithm routine again, until 
compatibility with a predetermined accuracy criterion has 
been achieved.  

•  Driver Routine 
•  Starts and stops the integration, stores intermediate results, and 

generally acts as an interface with the user.  
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