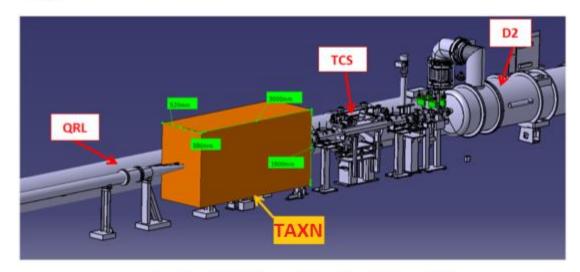
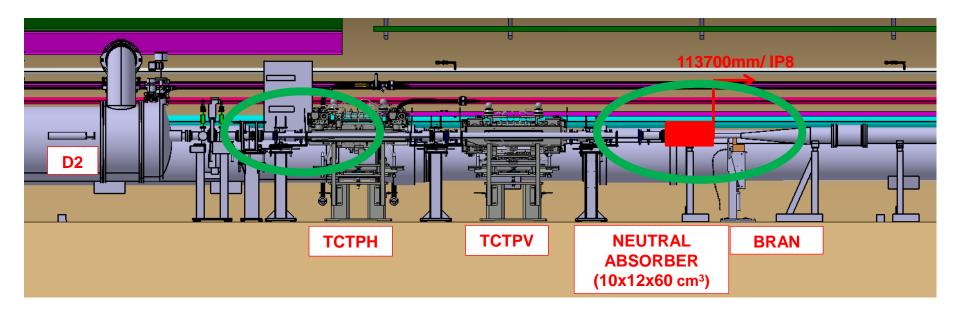

SITUATION OF TAXN AT P8

- The main problems are the energy peaks at the triplet (because there's no TAS at the region) and at the D2 (because no TAN).
- A 9x12x60 cm³ block made of INERMET + dedicated 50 cm Cu mask protecting the outgoing beam bore was considered.
- Peak power density is reduced a factor 10 (2 x5)


F. Cerutti, 22th WP8 meeting

Results show clearly that a mask placed at the exit side of the beam is enough.

• Current defined volume for a TAXN.



2. Point 8 Left (8L) general view. Dimension future TAN

2. Point 8 Right (8R) general view. Dimension future TAN

Collider-Experiment interface

Neutral absorber

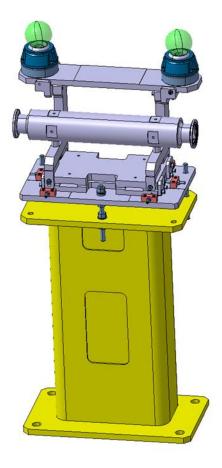
Chamonix 2014 : LS2 activity proposals	Chamonix 2016: LS2 activity proposals
Installation of a neutral absorber in front of D2 in L8	Maintained. (LHC-ECR to be done)
Installation of 2 TAXN for LHCb in P8	Maintained. (LHC-ECR to be done)
LHC Performance Workshop Session 8: (E)YETS and Long Shutdown 2	2 28 th January 2016 http://indico.cern.ch/event/448109/

Strategy and Preparation.

POINT 8 – RP SURVEY DATA

and Environmental Protection Unit Ambient dose equivalent rates in μ Sv/h at contact and 40cm measured on Dec 17th, 2012 (last "good" fill on Dec 5th, i.e. cooling time >1week) 8 Francisco Sanchez Galan, WP8 Bi-Weekly 45 9 D2 Q4 86791 C4.L8 1142 10400 9814 9450 BRAN 5450 04A RESERVED SPACE FOR DEBVA. RANSPORT ZONE SIDE OF CRYOSTAT TCTH 1167 LBRCC LQYEB 6 9 294.5 D1 9450 TCLI TCTV LBXA

HSE

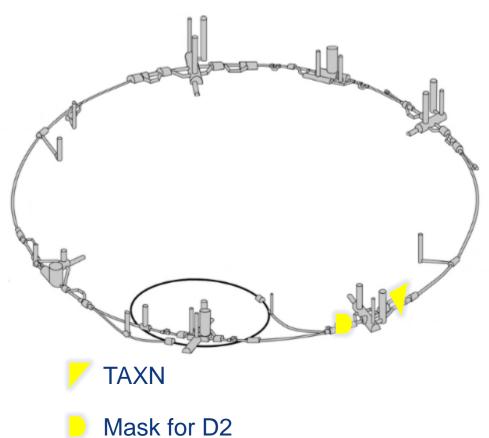

Occupational Health & Safety

Feb 2016

(1:75)

TCDDM

- 1.3 Equipment performance objectives
- The TCDDM is an essential complement of the new TAXN at IR8 as part of
- the D2 protection system. By absorbing collision debris, it reduces
- the energy deposition in the superconducting dipole D2, this way
- reducing the risk of quenches and damage for any operational scenario.
- Despite the fact that there are two parallel vacuum chambers at the mask
- location, only the vacuum chamber situated on the internal side of the
- ring needs to be protected.
- •
- TECHNICAL ANNEXES
- 2 PRELIMINARY TECHNICAL PARAMETERS
- 2.1 Assumptions
- The TCDDM mask (see Figure) will be essentially a thick vacuum chamber
- to protect the D2 coils, with the same aperture as the D2 bores (69mm
- inner diameter). The body of the fixed mask would form an integral part
- of the vacuum system. Its outer diameter is 150 mm and its effective
- length is 500 mm.


TCDDM Open issues (some of them)

- Integration in P8 layout challenging (WP15 Layout P8 start in April)
- Radiation scenarios. What luminosity shall we design for ~ 10³⁴ cm⁻² s⁻¹?
- Activation of the mask requires shielding?

TAXN P8 Open issues (some of them)

- INERMET vs Cu (TAN-like)
- Quick connection ?
- Radiation scenarios. What luminosity shall we design for ~ 10³⁴ cm⁻² s⁻¹?
 - Integration of BRAN- ZDC ?
 - Operation. Do we go for a fully remote?

WP8 – To be installed in LS2:

	A A A A	
AXN		

Equipment	Quantity	Location
TAXN for LHCb	2 units (1 per IP side)	P8
Mask for D2	TBC	P8

