8th Workshop on Hadron Physics in China and Opportunities Worldwide Aug 8-11., 2016, CCNU, Wuhan

Physics and prospects of Collins asymmetry at BESIII

Kai Zhu

(email:zhuk@ihep.ac.cn)
On behalf of the BESIII Collaboration
Institute of High Energy Physics

Outline

- > Introduction of Collins Function
- BEPCII and BESIII detector
- Analysis overview
 - > Reference frame
 - > Measurement
 - > Results
 - Systematics
- > Summary

Beijing Spectrometer not Beam Energy Scan

Fragmentation Functions

* First set: cross section observables in semiinclusive e^+e^- annihilation $e^+e^- \rightarrow \gamma/Z \rightarrow h+X$

$$\frac{1}{\sigma_0} \frac{d^2 \sigma^h}{dx \, d\cos \theta} = \frac{3}{8} (1 + \cos^2 \theta) \underline{F_T^h(x,s)} + \frac{3}{4} \sin^2 \theta \, \underline{F_L^h(x,s)} + \frac{3}{4} \cos \theta \, \underline{F_A^h(x,s)}$$

Second set: final state parton distribution

$$\frac{1}{\sigma_0} \frac{d\sigma^h}{dx} = F^h(x,s) = \sum_{i} \int_{x}^{1} \frac{dz}{z} C_i(z,\alpha_s(\mu), \frac{s}{\mu^2}) D_i^h(\frac{x}{z}, \mu^2) + \mathcal{O}(\frac{1}{\sqrt{s}})$$

probability parton *i* fragments into a hadron *h*

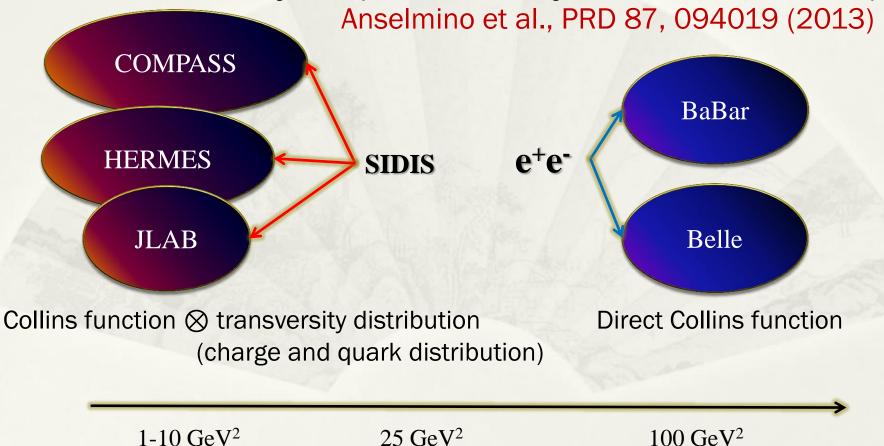
K.A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014) (http://pdg.lbl.gov)

Spin-dependent Fragmentation

- Relate the polarization of the quark to that of
 - the final hadron
 - * Longitudinal polarization
 - * Transverse polarization

- Non-perturbative QCD
- Spontaneous breaking of chiral symmetry

Collins FF


$$D_{hq^{\uparrow}}(z, P_{h\perp}) = D_1^q(z, P_{h\perp}^2) + H_1^{\perp q}(z, P_{h\perp}^2) \frac{(\hat{\mathbf{k}} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_q}{zM_h}$$

Unpolarized FF

J. Collins, Nucl. Phys. B936, 161 (1993)

Measurements

Global analysis (universality of the Collins FF)

2016/8/9 BESIII Collins @ Hadron 2016

5

Measurements

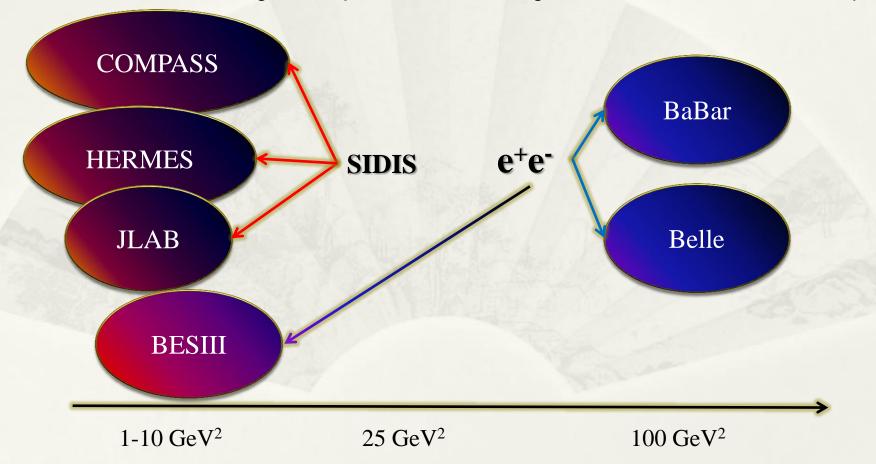
Global analysis (universality of the Collins FF)

COMPACC

- The Q² evolution of Collins FFs was assumed following the extrapolation in the unpolarized FF, but this has not been validated.
- Low Q² data from e⁺e⁻ collider is useful.

Collins function ⊗ transversity distribution (charge and quark distribution)

Direct Collins function

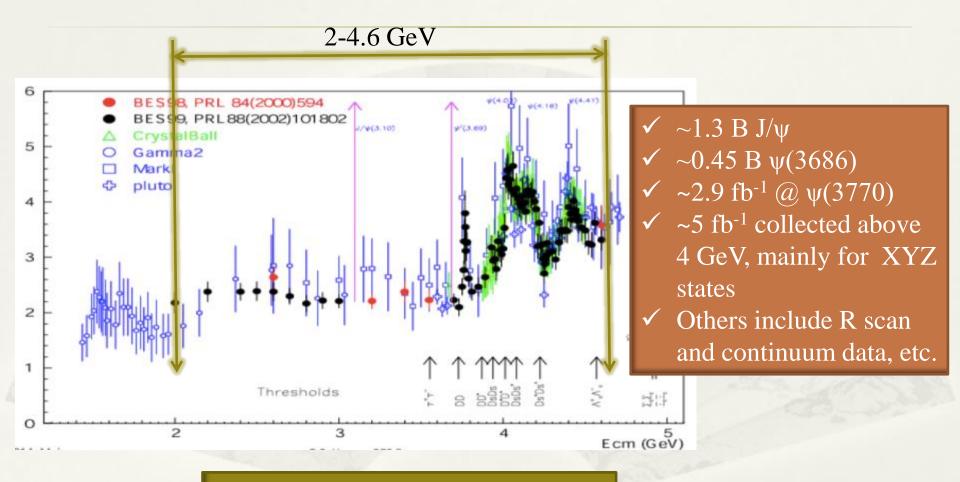

 $1-10 \text{ GeV}^2$

 25 GeV^2

 $100 \, \text{GeV}^2$

Measurements

* Global analysis (universality of the Collins FF)

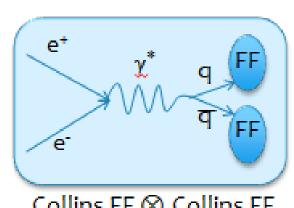


BEPCII & BESIII

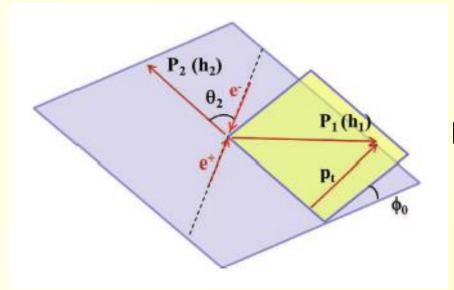
BEPCII BESIII

 $\sqrt{s} = 2$ ~4.6 GeV, rich physics potential . Light hadron, charmonium, charm, R & QCD.

BESIII (data samples)



62 pb⁻¹ @ 3.65 GeV (used by this work)


Reference Frame and method

Collins Effect: transverse quark spin relates to an azimuthal asymmetry

 $e^+e^- \rightarrow q\bar{q} \rightarrow hX$ (with unpolarized beams) Impossible: Collins effect of single (anti-)quark Possible: Correlation of quark and anti-quark

Collins FF (S) Collins FF

Parameterization:
$$a \cos(2\phi_0) + b$$

 $a = a (\theta_2, z_1, z_2)$

$$z = 2E_h/Q$$

Difference due to energy scale

At BESIII:

- No obvious thrust axis
- π dominant

To select $e^+e^- \rightarrow \pi\pi X$

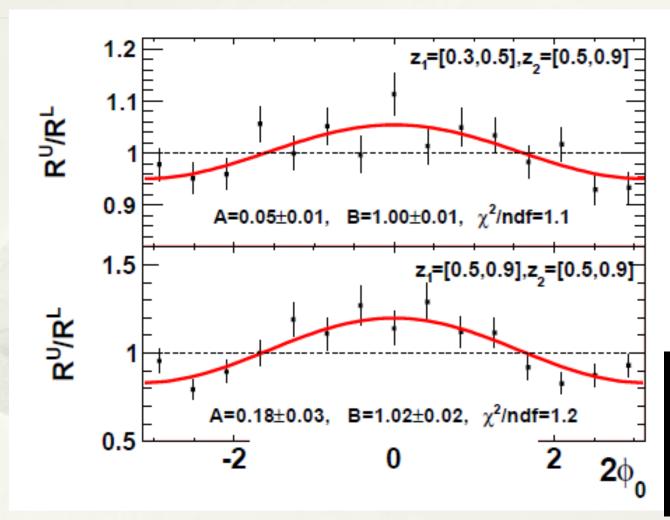
- Charged tracks from MDC
- Photons from EMC
- PID by combined information of dE/dx and TOF
- $N_{trk} \ge 3 \&\& N_{\pi} \ge 2 \&\& N_e = 0$
- $E_{vis} > 1.5 \text{ GeV}$

Pion pair:

- Fractional energy 0.3 < z < 0.9 $(z \equiv 2E_h/\sqrt{s})$
- Open angle $\theta_{\pi\pi} > 120^{\circ}$
- Save all possible combinations

Two definitions

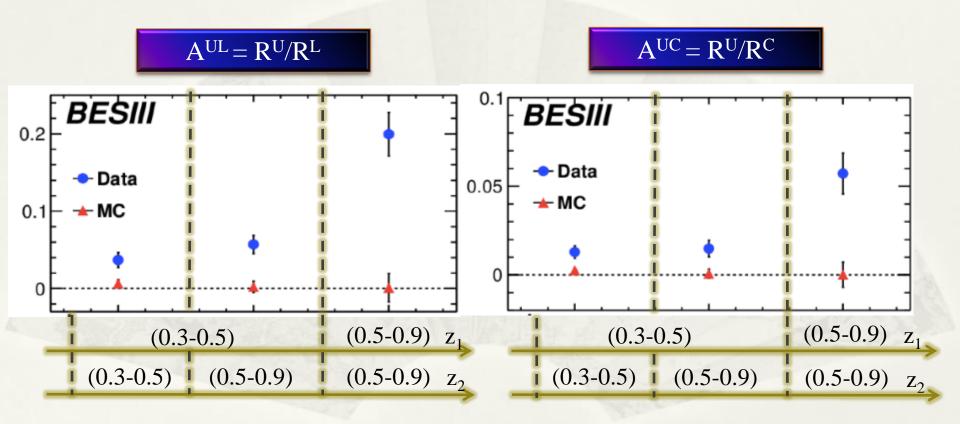
* Normalized ratio $R = \frac{N(2\phi_0)}{\langle N_0 \rangle}$


$$R = \frac{N(2\phi_0)}{\langle N_0 \rangle}$$

- * $N(2\phi_0)$: di- π yield in each $2\phi_0$ subdivision
- * $\langle N_0 \rangle$: averaged bin content
- * Three types of ratio
 - * R^U : unlike-sign $(\pi^{\pm}\pi^{\mp})$
 - * R^L : like-sign $(\pi^{\pm}\pi^{\pm})$
 - * R^C : all pion-pairs $(\pi\pi)$
- Double ratio (to reduce acceptance and radiation effect)

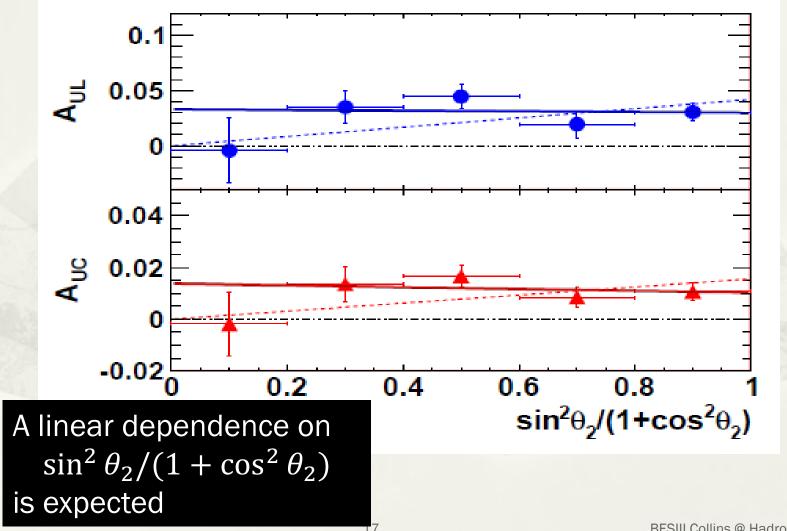
$$\frac{R^{\mathrm{U}}}{R^{\mathrm{L(C)}}} = A\cos(2\phi_0) + B.$$

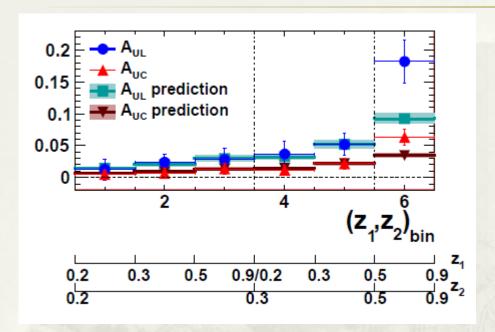
 $A^{UL(UC)}$ mainly contains the Collins effect B should be consistent with unity


Results

Obvious asymmetry is observed!

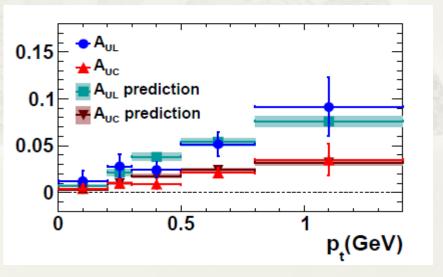
Data/MC comparison


MC is generated without Collins effect.


Other considerations and checks

- * Misidentification of K and π : unfolding the measurement of $A^{\pi\pi}$ and $A^{K\pi}$
- * Gluon radiation effect: subtracting normalized yields $R^U R^{L(C)}$
- Higher harmonic terms: including in the fit function
- Possible charge-dependent acceptance effects: studying double ratio of positively over negatively charged pion pairs; combining pion pair randomly
- * Beam polarization: studying the angular distribution of $e^+e^- \rightarrow \mu^+\mu^-$

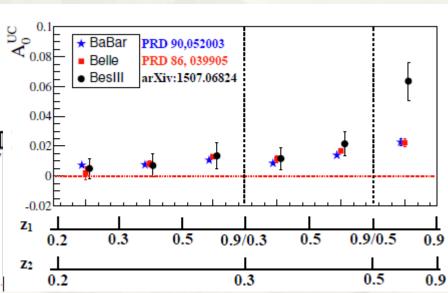
Linear dependence



Compare with theory

Asymmetry dependence on transverse momentum


Prediction is from Z. B. Kang, A. Prokudin, P. Sun, F. Yuan Phys. Rev. D 93, 014009 (2016)



Compare with other experiments

Comparison between different results obtained at different Q^2

- BaBar Belle @ $Q^2 \sim 110 \ GeV^2$
- BESIII @ $Q^2 \sim 13 \text{ GeV}^2$

From I. Garzia, INFN

Predicted in Collins original paper:

- -Larger asymmetry at lower Q^2 region
- -Asymmetries increase as z grows

Summary

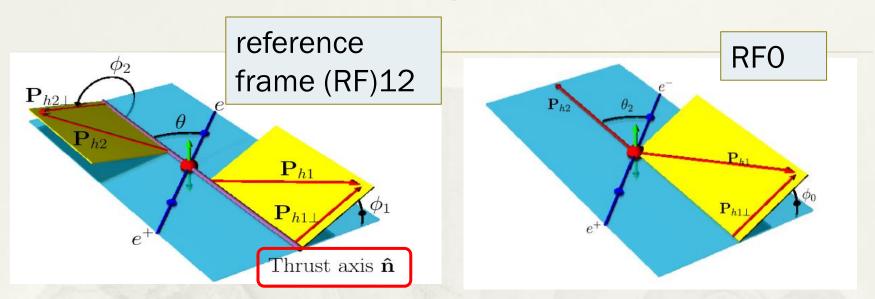
Phys. Rev. Lett. 116, 042001

- We measure the Collins asymmetry by using 62/pb BESIII data @ 3.65 GeV
 - * Obvious asymmetry is observed.
 - * First measurement with e^+e^- experiment at medium energy region.
 - * Compared with other experimental results, one can extract transversity in nucleon, check the universality of CFF, explore Q^2 evolution and p_t dependence, then shed light on the fragmentation processes.

* Outlook

- * Collins asymmetries with KK, $K\pi$ and $\pi\pi$ (maybe simultaneous measurement)
- * Including π^0 in final states
- * Data at higher energy regions
- * BESIII will take more data @ \sqrt{s} = 3.51 GeV, which will improve precision of this measurement.

THANKS FOR YOUR ATTENTION


backup

Phys. Rev. Lett. 116, 042001

TABLE I. Results of $A_{\rm UL}$ and $A_{\rm UC}$ in each (z_1, z_2) and p_t bin. The uncertainties are statistical and systematic, respectively. The averages $\langle z_i \rangle$, $\langle p_t \rangle$ and $\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle}$ are also given.

$z_1 \leftrightarrow z_2$	$\langle z_1 \rangle$	$\langle z_2 \rangle$	$\langle p_t \rangle ({\rm GeV})$	$\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle}$	$A_{\mathrm{UL}}(\%)$	$A_{\mathrm{UC}}(\%)$
[0.2, 0.3][0.2, 0.3]	0.245	0.245	0.262	0.589	$1.28 \pm 0.93 \pm 1.38$	$0.50 \pm 0.32 \pm 0.60$
[0.2, 0.3][0.3, 0.5]	0.311	0.311	0.329	0.576	$2.40 \pm 0.74 \pm 1.08$	$0.67 \pm 0.27 \pm 0.72$
[0.2, 0.3][0.5, 0.9]	0.428	0.426	0.444	0.572	$2.81 \pm 1.44 \pm 1.10$	$1.36 \pm 0.54 \pm 0.64$
[0.3, 0.5][0.3, 0.5]	0.379	0.379	0.388	0.563	$3.69 \pm 1.07 \pm 1.65$	$1.17 \pm 0.39 \pm 0.62$
[0.3, 0.5][0.5, 0.9]	0.498	0.499	0.479	0.564	$5.18 \pm 1.32 \pm 1.08$	$2.17 \pm 0.47 \pm 0.65$
[0.5, 0.9][0.5, 0.9]	0.625	0.628	0.499	0.570	$18.24 \pm 3.19 \pm 1.36$	$6.37 \pm 0.99 \pm 0.82$
$p_t (\mathrm{GeV})$	$\langle p_t \rangle ({ m GeV})$	$\langle z_1 \rangle$	$\langle z_2 \rangle$	$\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle}$	$A_{\mathrm{UL}}(\%)$	$A_{\mathrm{UC}}(\%)$
[0.00, 0.20]	0.133	0.291	0.348	0.574	$1.22 \pm 1.02 \pm 0.48$	$0.44 \pm 0.36 \pm 0.20$
[0.20, 0.30]	0.253	0.285	0.344	0.579	$2.79 \pm 0.89 \pm 0.93$	$1.00 \pm 0.32 \pm 0.34$
[0.30, 0.45]	0.405	0.327	0.346	0.570	$2.41 \pm 0.79 \pm 0.43$	$0.90 \pm 0.26 \pm 0.43$
[0.45, 0.80]	0.610	0.453	0.349	0.571	$5.16 \pm 0.95 \pm 0.87$	$2.11 \pm 0.41 \pm 0.27$
[0.80, 1.40]	0.923	0.646	0.334	0.584	$9.13 \pm 2.74 \pm 1.52$	$3.50 \pm 0.98 \pm 1.37$

Double Collins Asymmetries (DCA)

- * The spin correlation of hadron fragmented from quark and anti-quark in opposite hemisphere follows a $\cos(\phi 1+\phi 2)$ modulation in RF12 or a $\cos(2\phi_0)$ modulation in RF0
 - DCA were observed in both definitions by Belle and BaBar
 Belle Collaboration: Phys. Rev. Lett. 96, 232002 (2006); Phys. Rev. D 78, 032011 (2008); Phys. Rev. D 86, 039905(E) (2012).

BaBar Collaboration: Phys. Rev. D 90, 052003 (2014)

From Xiao-rui Lyu