Relating partonic information to lattice QCD calculation

Yan-Qing Ma

Peking University

Based on works done with Tomomi Ishikawa, Jian-Wei Qiu and Shinsuke Yoshida

8th Workshop on Hadron Physics in China and Opportunities Worldwide CCNU, Wuhan, August. 9th, 2016

I. Introduction to PDFs

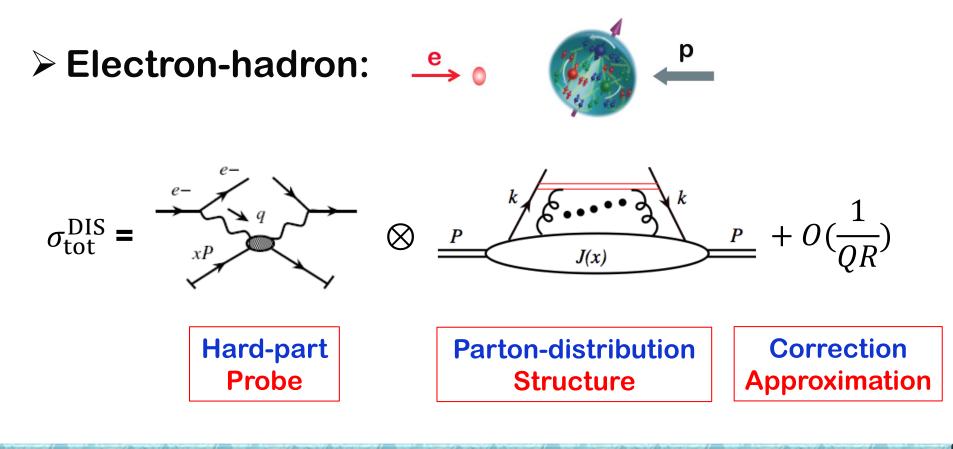
II. New ideas to calculate PDFs on lattice

III. A case study: Quasi PDFs

IV. Summary

The key and a first principle method to relate experimental data to QCD theory

QCD factorization



CCNU, Aug. 9, 2016

Operator definition of PDFs

Spin-averaged quark distribution

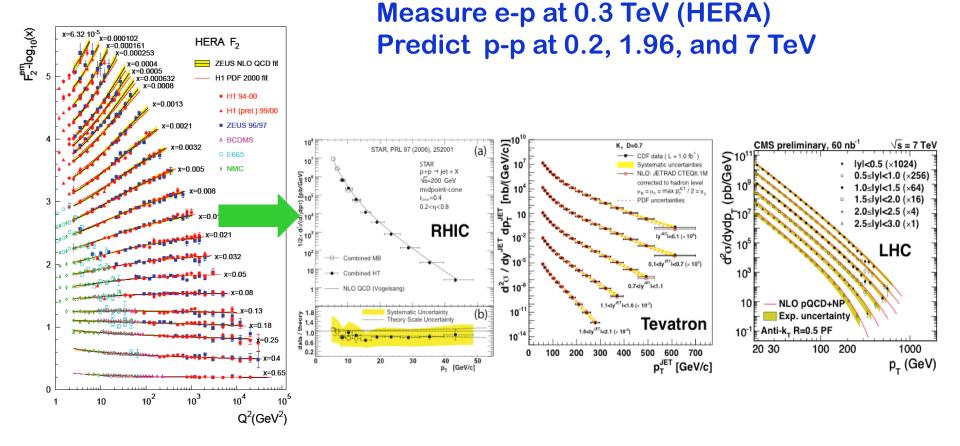
$$f_{q/p}(x,\mu^2) = \int \frac{d\xi_-}{4\pi} e^{-ix\xi_- P_+} \langle P | \overline{\psi}(\xi_-) \gamma_+ \exp\left\{-ig \int_0^{\xi_-} d\eta_- A_+(\eta_-)\right\} \psi(0) | P \rangle$$

- Simplest of all parton correlation functions
- Not direct physical observable, like cross section; but well defined in QCD
- Boost invariant along "+" direction
- > Parton interpretation emerges in $A_+ = 0$ gauge
- Logarithmic UV divergent, renormalizable
- > Time dependent!

CCNU, Aug. 9, 2016

Extract PDFs by fitting data

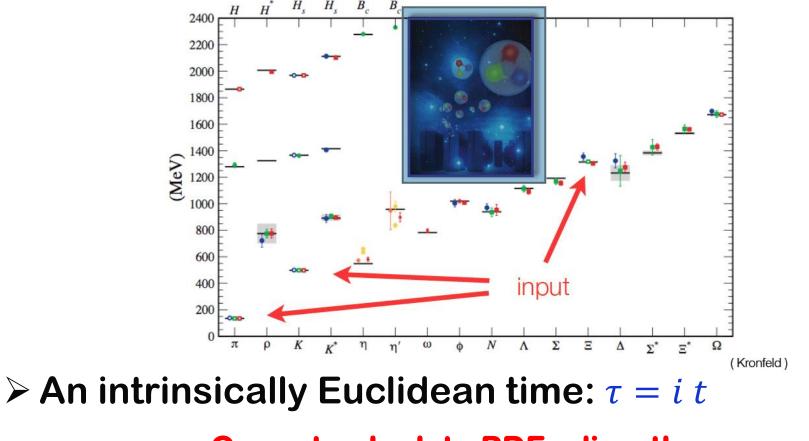
Successful



Is it possible to determine PDFs nonperturbatively from first principle?

Lattice QCD

The main nonperturbative approach to solve QCDPredict the hadron mass



Cannot calculate PDFs directly

CCNU, Aug. 9, 2016

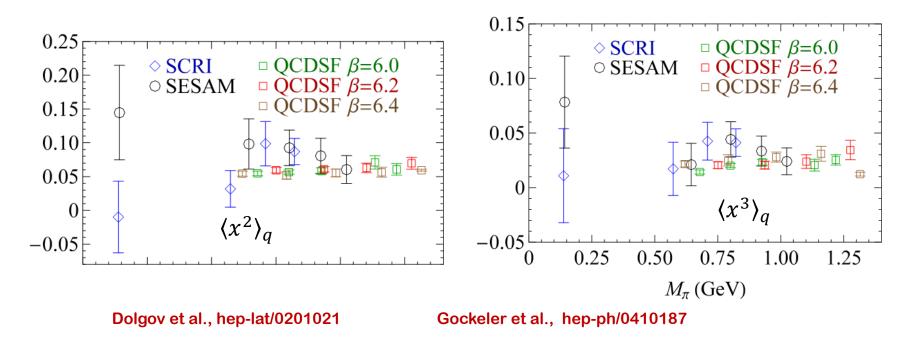
PDFs from lattice QCD

Moments: matrix elements of local operators

 $\langle x^n(\mu^2) \rangle_q \equiv \int_0^1 dx \, x^n f_{q/p}(x,\mu^2)$

CCNU, Aug. 9, 2016

> Works, but only for limited moments



I. Introduction to PDFs

II. New ideas to calculate PDFs on lattice

III. A case study: Quasi PDFs

IV. Summary

Ji's approach

> Quasi distribution:

Ji, 1305.1539, 1404.6680

$$\tilde{f}_{q/p}(x,\mu^2,P_z) = \int \frac{d\xi_z}{4\pi} e^{-ix\xi_z P_z} \langle P|\overline{\psi}(\xi_z) \gamma_z \exp\left\{-ig \int_0^{\xi_z} d\eta_z A_z(\eta_z)\right\} \psi(0)|P\rangle$$

- Features of quasi PDFs
- Fields separated along the z-direction
- No time dependence: calculable using standard lattice method
- Using OPE: quasi PDFs \rightarrow normal PDFs, as $P_Z \rightarrow \infty$.
- \succ **Proposed matching at finite** P_z

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$

Ma-Qiu's approach

YQM, Qiu, 1404.6860, 1412.2688

\succ "Lattice cross section": $\tilde{\sigma}_{\rm E}^{\rm Lat}(\tilde{x}, 1/a, P_z)$

- Hadronic matrix element
- $P_z \leftrightarrow \sqrt{s}$: "collision energy"
- $1/a \leftrightarrow Q$: hard scale, resolution
- $\tilde{x} \leftrightarrow x$: parameter

Condition for a good "lattice cross section"

- ① Calculable on Euclidean lattice QCD
- ② UV and IR safe perturbatively (renormalizable)
- **③ CO divergence: factorizable (similar to DIS cross section)**

$$\tilde{\sigma}_{\mathrm{M}}(\tilde{x},\tilde{\mu}^2,P_z) \approx \sum_i \int_0^1 \frac{dx}{x} f_{i/h}(x,\mu^2) \,\mathcal{C}_i(\frac{\tilde{x}}{x},\tilde{\mu}^2,\mu^2,P_z) + \mathcal{O}(1/\mu^2)$$

Ji's approach V.S. Ma-Qiu's approach

For quasi PDFs:

Ji's approach: large momentum effective field theory

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$

• Ma-Qiu's approach: QCD factorization (if it is possible)

$$\tilde{\sigma}_{\mathrm{M}}(\tilde{x},\tilde{\mu}^2,P_z) \approx \sum_i \int_0^1 \frac{dx}{x} f_{i/h}(x,\mu^2) \mathcal{C}_i(\frac{\tilde{x}}{x},\tilde{\mu}^2,\mu^2,P_z) + \mathcal{O}(1/\mu^2)$$

Ji's approach V.S. Ma-Qiu's approach cont.

- Ma-Qiu's approach has relaxed condition, beyond quasi-PDFs
 - Any quantity calculated on lattice can be used to determine PDFs, as far as its CO structure can be expanded by PDFs
 - The quantity is not demanded to go to PDF in any limit

Factorization is the essential question!

> Ma-Qiu's approach is a generalization of Ji's

- I. Introduction to PDFs
- II. New ideas to calculate PDFs on lattice
- **III. A case study: Quasi PDFs**
- **IV. Summary**

Quasi PDFs

"Quasi quark" PDF as an example

 $\tilde{f}_{q/p}(x,\mu^2,P_z) = \int \frac{d\xi_z}{4\pi} e^{-ix\xi_z P_z} \langle P|\overline{\psi}(\xi_z)\,\gamma_z\,\exp\left\{-ig\int_0^{\xi_z} d\eta_z A_z(\eta_z)\right\}\psi(0)|P\rangle$

- > A good "lattice cross section"?
 - ✓ No time dependence: calculable on Euclidean lattice
 - ✓ IR divergence: cancelled by unitarity YQM, Qiu, 1404.6860, 1412.2688
 - ? UV safe perturbatively: renormalizable?
 - ? CO divergence: factorizable?

Lattice results

Exploratory studies

Lin et al. 1402.1462 Alexandrou et al. 1504.07455

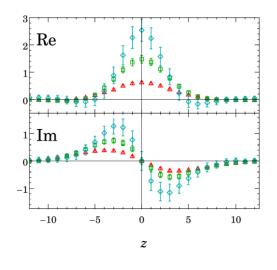
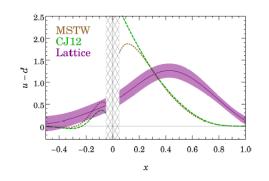


FIG. 1. The real (top) and imaginary (bottom) parts of the nonlocal isovector matrix element h of Eq. 3 computed on a lattice with the nucleon momentum P_z (in units of $2\pi/L$) = 1 (red triangles), 2 (green squares), 3 (cyan diamonds).

CCNU, Aug. 9, 2016



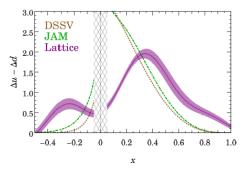


FIG. 2. The unpolarized isovector quark distribution u(x) - d(x) computed on the lattice (purple band), compared with the global analyses by MSTW [13] (brown dotted line), and CTEQ-JLab (CJ12, green dashed line) [14] with medium nuclear correction near $(1.3GeV)^2$. The negative x region is the sea quark distribution with $\overline{q}(x) = -q(-x)$.

FIG. 3. (top) The isovector helicity distribution $\Delta u(x) - \Delta d(x)$ (purple band) computed on the lattice, along with selected global polarized analyses by JAM [19] (green dot-dashed) and DSSV09 [3] (brown dotted line). The corresponding sea-quark distributions are $\Delta \overline{q}(x) = \Delta q(-x)$.

- Works, good convergence
- Not consistent with experimental data
- Any problem with quasi PDFs?

Possible problems with quasi PDFs

Renormalization

CCNU, Aug. 9, 2016

- Power UV divergent, nonlocal operator, renormalizable?
- Whether mixing with operators that has t dependence under renormalization? If yes, cannot calculate on lattice

\succ "Bad" large \widetilde{x} behavior

$$\tilde{f}_{i/p}(\tilde{x}, \tilde{\mu}^2, P_z) \approx \sum_j \int_0^1 \frac{dx}{x} \mathcal{C}_{ij}(\frac{\tilde{x}}{x}, \tilde{\mu}^2, \mu^2, P_z) f_{j/p}(x, \mu^2)$$

as $x \to 0, \ f_{j/p}(x, \mu^2) \to x^{-\alpha}$ with $1 < \alpha < 2$

 $\mathcal{C}_{ij}^{(1)}(\tilde{x}/x,\tilde{\mu}^2,\mu^2,P_z)$ has x/\tilde{x} behaviour as $x\to 0$ in DR

Integration divergent, ruin factorization

Renormalization in coordinate space

Coordinate space definition

 $\tilde{F}_{q/p}(\xi_z, \tilde{\mu}^2, P_z) = \langle h(P) | \overline{\psi}(\xi_z) \, \frac{\gamma_z}{2} \Phi_{n_z}^{(f)}(\{\xi_z, 0\}) \, \psi(0) | h(P) \rangle$

Why coordinate space

- "Bad" large x behavior corresponds to "bad" small ξ_z behavor: quasi PDFs are ill-defined as $\xi_z \to 0$
- No problem with finite ξ_z

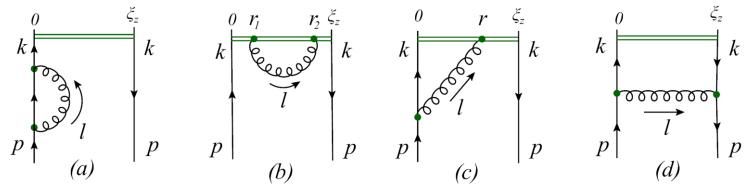
CCNU, Aug. 9, 2016

Go back to momentum space

• Further subtraction needed, like $\ln(\xi_z)$

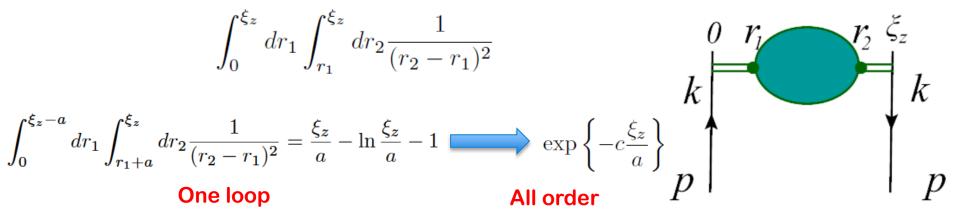
Renormalize power UV div.

> Quasi quark PDFs in coordinate space



• Power divergence: diagram (b)

CCNU, Aug. 9, 2016



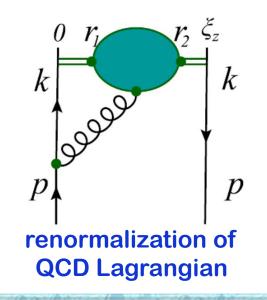
• Well known, mass renormalization of test particle Dotsenko, Vergeles, NPB (1980)

Log UV div.

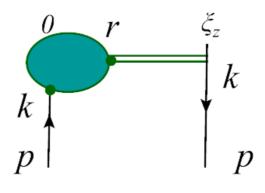
Using DR after power divergence removed

$$\int_{0}^{\xi_{z}} dr_{1} \int_{r_{1}}^{\xi_{z}} dr_{2} \frac{1}{(r_{2} - r_{1})^{2 - 2\epsilon}} = \frac{1}{-2\epsilon} \frac{1}{1 - 2\epsilon} \xi_{z}^{2\epsilon} = \frac{1}{-2\epsilon} - \frac{1}{2} \ln(\xi_{z}^{2}) + O(\epsilon)$$

- Left over log divergence: come from end points of gauge link, independent of ξ_z
- > Additional log UV divergence



CCNU, Aug. 9, 2016



come from end points of gauge link

Renormalize log UV div.

After power UV div. subtracted, and using renormalized QCD Lagrangian:

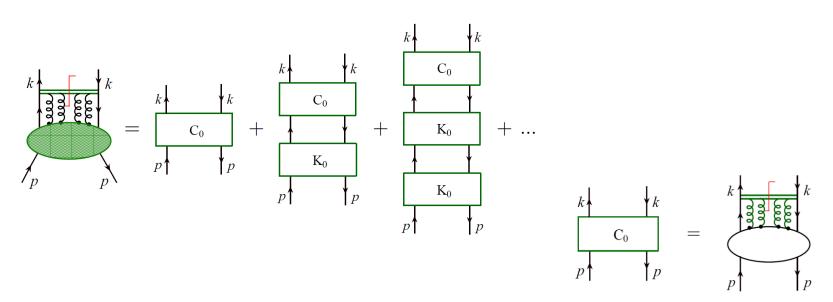
- All UV divergences come from endpoints of gauge link: local nonlocal UV div. for normal PDFs
- Renormalizable by a local UV counterterm

 $\tilde{F}_{i/p}^{R}(\xi_z, \tilde{\mu}^2, P_z) = Z_i \tilde{F}_{i/p}^{b}(\xi_z, \tilde{\mu}^2, P_z)$ Z_i : constant

- Renormalization: multiplicative factor, no operator mixing
 - $\ln(\xi_z^2)$: divergent as $\xi_z \to 0$, freely subtracted

CCNU, Aug. 9, 2016

Generalized ladder diagrams decomposition



• C_0, K_0 : **2PI kernels**

CCNU, Aug. 9, 2016

• Ordering in virtuality $p^2 \ll k^2 \sim \mu^2$

Using physical gauge, 2PI diagrams are finite

Factorization

Ellis, Georgi, Machacek, Politzer, Ross, 1978, 1979

Factorize the last kernel, and then recursively:

$\widehat{\mathcal{P}}$: pick up the singular part of integration



Modified qusi PDFs: good "lattice cross section"

CCNU, Aug. 9, 2016

One loop example: quark→quark

Expand the factorization formula

 $\tilde{f}_{q/q}^{(1)}(\tilde{x}) = f_{q/q}^{(0)}(x) \otimes \mathcal{C}_{q/q}^{(1)}(\tilde{x}/x) + f_{q/q}^{(1)}(x) \otimes \mathcal{C}_{q/q}^{(0)}(\tilde{x}/x)$

Feynman diagrams

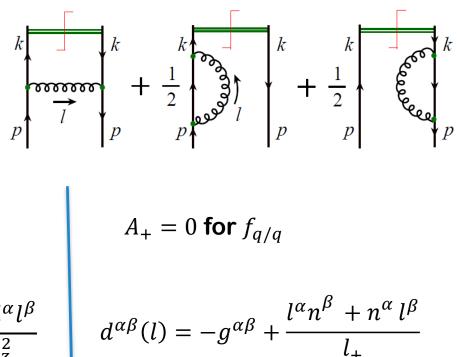
Same diagrams for both, but with different gauge

Solution Gauge choice $A_z = 0$ for $\tilde{f}_{a/a}$

Gluon propagator:

CCNU, Aug. 9, 2016

$$\tilde{d}^{\alpha\beta}(l) = -g^{\alpha\beta} + \frac{l^{\alpha}n_z^{\beta} + n_z^{\alpha}l^{\beta}}{l_z} - \frac{n_z^2l^{\alpha}l^{\beta}}{l_z^2}$$



After the integration of energy component by using residue theory

$$\begin{split} \tilde{f}_{q/q}^{(1)}(\tilde{x},\tilde{\mu}^{2},P_{z}) &= C_{F}\frac{\alpha_{s}}{2\pi}\frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)}\int_{0}^{\tilde{\mu}^{2}}\frac{dl_{\perp}^{2}}{l_{\perp}^{2+2\epsilon}}\int_{-\infty}^{+\infty}\frac{dl_{z}}{P_{z}}\left[\delta\left(1-\tilde{x}-y\right)-\delta\left(1-\tilde{x}\right)\right]\left\{\frac{1}{y}\left(1-y+\frac{1-\epsilon}{2}y^{2}\right)\right\} \\ &\times\left[\frac{y}{\sqrt{\lambda^{2}+y^{2}}}+\frac{1-y}{\sqrt{\lambda^{2}+(1-y)^{2}}}\right]+\frac{(1-y)\lambda^{2}}{2y^{2}\sqrt{\lambda^{2}+y^{2}}}+\frac{\lambda^{2}}{2y\sqrt{\lambda^{2}+(1-y)^{2}}}+\frac{1-\epsilon}{2}\frac{(1-y)\lambda^{2}}{[\lambda^{2}+(1-y)^{2}]^{3/2}}\right\} \end{split}$$

where $y = l_z/P_z, \ \lambda^2 = l_\perp^2/P_z^2, \ C_F = (N_c^2 - 1)/(2N_c)$

Cancellation of CO divergence

CCNU, Aug. 9, 2016

$$\frac{y}{\sqrt{\lambda^2 + y^2}} + \frac{1 - y}{\sqrt{\lambda^2 + (1 - y)^2}} = 2\theta(0 < y < 1) - \left[\operatorname{Sgn}(y)\frac{\sqrt{\lambda^2 + y^2} - |y|}{\sqrt{\lambda^2 + y^2}} + \operatorname{Sgn}(1 - y)\frac{\sqrt{\lambda^2 + (1 - y)^2} - |1 - y|}{\sqrt{\lambda^2 + (1 - y)^2}}\right]$$

Only the first term is CO divergent for, which is the same as normal PDF - necessary!

One-loop coefficient functions

$\geq \overline{MS}$ scheme for normal PDF

$$\mathcal{C}_{q/q}^{(1)}(t,\tilde{\mu}^{2},\mu^{2},P_{z}) = \tilde{f}_{q/q}^{(1)}(t,\tilde{\mu}^{2},P_{z}) - f_{q/q}^{(1)}(t,\mu^{2}) \qquad t = \tilde{x}/x$$

$$\stackrel{\mathcal{C}_{q/q}^{(1)}(t)}{\longrightarrow} = \left[\frac{1+t^{2}}{1-t}\ln\frac{\tilde{\mu}^{2}}{\mu^{2}} + 1 - t\right]_{+} + \left[\frac{t\Lambda_{1-t}}{(1-t)^{2}} + \frac{\Lambda_{t}}{1-t} + \frac{\mathrm{Sgn}(t)\Lambda_{t}}{\Lambda_{t} + |t|} - \frac{1+t^{2}}{1-t}\left[\mathrm{Sgn}(t)\ln\left(1+\frac{\Lambda_{t}}{2|t|}\right) + \mathrm{Sgn}(1-t)\ln\left(1+\frac{\Lambda_{1-t}}{2|1-t|}\right)\right]_{N}$$

where $\Lambda_t = \sqrt{\tilde{\mu}^2/P_z^2 + t^2} - |t|$, $\operatorname{Sgn}(t) = 1$ if $t \ge 0$, and -1 otherwise

Coefficient functions for all partonic channels are free of CO div.

To do list

> Additional matching:

$$\begin{aligned} \widetilde{\sigma}_{\mathrm{E}}^{\mathrm{Lat}}(\tilde{x}, 1/a, P_z) & \stackrel{\mathcal{Z}}{\longleftrightarrow} \quad \widetilde{\sigma}_{\mathrm{E}}(\tilde{x}, \tilde{\mu}^2, P_z) \\ & & & \\ & \\ & & \\$$

Lattice perturbation theory

In progress

Nonperturbative matching

CCNU, Aug. 9, 2016

Summary

"Lattice cross section" = hadronic matrix elements that are calculabe on lattice QCD + factorizable to partonic structure functions

E.g. Modified quasi PDFs

CCNU, Aug. 9, 2016

- Find more good "Lattice cross section", PDFs extracted by global fit of these data
- Find good "lattice cross section" for other nonperturbative quantities: GPDs, TMDs, ...
- Lattice QCD can calculate partonic structure functions now, but, more works are needed!

Thank you!